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v ABSTRACT

This document presents the mathematical specifications of

Release 4.0 of the Attitude Determination Error Analysis

System (ADEAS), which provides a general-purpose linear

error analysis capability for various spacecraft attitude

geometries and determination processes. The analytical

basis of the system is presented, and detailed equations are

provided for both three-axis-stabilized and spin-stabilized

attitude sensor models.
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SECTION 1 - INTRODUCTION

The Attitude Determination Error Analysis System (ADEAS)

provides a general-purpose linear error analysis capability

for various spacecraft attitude determination processes.

ADEAS does not process sensor data but simulates the atti-

tude determination logic and computes the resulting attitude

determination accuracy. The spacecraft attitude determina-

tion scenarios that can be analyzed by ADEAS are described

below:

• From low-altitude Earth orbits to International

Sun-Earth Explorer (ISEE)-3 type of Earth-Sun li-

bration point orbits

• Spin-stabilized or three-axis-stabilized spacecraft

attitudes

• Batch weighted-least-squares and" sequential filter

attitude determination methods

• Sensor complements, which are subsets of Sun sen-

sors, Earth sensors, star sensors, gyros, and mag-

netometers.

These scenarios include most of the existing and anticipated

Earth satellite attitude determination systems. A possible

exception is that attitude rate information is assumed

available for use in the propagation of satellite attitudes

in the multiframe method. The rate information is usually

provided by gyros.

The ADEAS system requirements are presented in Reference i.

The detailed mathematical specifications for ADEAS are pre-

sented in this document. Section 2 presents the mathemati-

cal formulations of linear error analyses for batch and

sequential estimators. The formulations are general and not

limited only to attitude determination systems. Sections 3

i-i

0450



and 4 describe the attitude and sensor models included in

the program. Section 5 specifies the reference systems and

vectors used I_L ADEAS.

Although many of the algorithms have been extensively re-

vised, this document is based in large part on Reference 2.

i
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SECTION 2 - FILTER SPECIFICATION

This section presents the specifications for error analysis

using batch and sequential filters. While ADEAS deals spe-

cifically with attitude determination, Section 2.1 presents

a widely applicable system model, and Sections 2.2, 2.3, and

2.4 derive general error analysis equations for batch and

Kalman filters. Sections 3 and 4 then deal with specializing

the general specifications to the cases of spin-stabilized

and three-axis-stabilized spacecraft.

2.1 SYSTEM MODEL

Let x be an N-dimensional vector that characterizes the sys-

tem under consideration. This state vector evolves in time

according to the following dynamic model:

x(t) = f(x(t), t) + u(t) (2.1-1)

where the dynamic noise 5(t) is a Gaussian white noise proc-

ess with mean and covariance given by

E[u(t)] = 0

E[u(t) u--T(t')] = Qu 6(t - t')

(E[...] denotes taking the expectation value.) x includes

m

all parameters of interest necessary to compute x even though

some parameters may have zero derivative. For spacecraft

attitude determination, _ includes the spacecraft attitude

parameters and additional dynamic parameters such as gyro-

scope biases and alignments.

0450
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The true value of the state vector is never exactly known

but is instead estimated by the state estimate vector, x*.

This estimate evolves in time according to

d

._ B m

x*(t) = f(x*(t), t) (2.1-2)

The state error vector given by

m m

nx(t) - x(t) - x*(t)

is assumed to always remain small, so linear error analysis

techniques may be u_ed. To first order, then

AxCt) = x(t) - x*(t) = f(x(t), t) - f(x*(t), t) + u(t)

(2..1-3)

__ (t) nx(t) ÷ u(t)
8x

Integrating this formally gives

hi(t) = ¢(t, to) _i(t o) + _(t, to) (2.1-4)

where the state transition matrix ¢ is given by

¢(t, to) = ai(t) ¢(t, to)
8x (2.1-5)

¢(t o, t0) : z

045o
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and the random excitation vector _ by

_(t, t o) _/t

t o

_(t, t') u(t') dt' (2.1-6)

It follows from Equation (2.1-5) that _ obeys the group

property

_(t 2, t O ) = #(t 2, t I) _(t I, t o ) (2.1-7)

The random excitation vector satisfies the equation

_(t, to) : #(t, tI) _(t I, t0) + _(t, tI) (2.1-S)

>.

A filter produces state estimates based on information ob-

tained from measurements made at discrete times. Let Yi be

a measurement value obtained at time t i. In ADEAS, measure-

ments performed simultaneously are treated as independent

scalar measurements, so the times t i need not be distinct.

Measurements are related to the state vector by the following

measurement model:

m m

Yi = gi(x(ti)' p) + _i (2.1-9)

0450
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where _ is a vector of measurement parameters and _i is a

Gaussian white noise process with mean and covariance given

by

/. - .

E[_ i] = 0

for i _ j

(2.1-10)

Note that we will consider p to include the parameters neces-

sary for all possible measurements, not just those measure-

ments made at any specific time t i. For spacecraft attitude

determination, p would include all sensor alignments, biases,

scale factors, etc.

The functions gi are assumed to be known functi0ns of impre-

cisely known arguments. Therefore, it is possible to com-

pute expected measurement values by

y_ = gi(x*(ti), p*) (2.1-11)

where P* is a vector of estimated measurement parameters.

The measurement residual between the actual and computed

measurements is then

m

AYi = Yi - Yi = gi(x(ti )' _) - gi(x*(ti ) P*) + _i

(2.1-12)

= _--Sgi 8gi Ap + _iAx(t i) + --
8x 8p

0450
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where A_ and Ap _ p - p* are both assumed small.

The function gi(x(ti), P) can be written as

gi(x(ti), p) = (i + k i) hi(x(ti), P') + b i

+ a i sin(_ i t i + _i )

(2.1-13)

where k. = measurement scale factor error
1

b i = sensor bias

a i = amplitude of orbit-related or other unknown

periodic error source

_. = frequency of periodic error source
1

_i = phase angle of periodic error source

The parameters k i, b i, a i, _i' and _i are assumed to depend

only on the measurement type and not on the measurement time.

The frequencies _i and phases _i are assumed to be exactly

known.

The parameters k i, b i, and a i are a subset of the vector of

measurement parameters; the vector P' contains the remaining

measurement parameters. The partial derivatives of the

measurement with respect to these parameters are especially

simple:

8gi (x(ti) P') = gi_. = h i
1

(2.1-14)

8g i

8b. -
1

(2.1-15)

j_>.' -

t .:_
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8a.
1

= sin (_iti + _i ) (2.1-z6)
L,

The partial derivatives with respect to x and p' are derived

in Sections 3.3 and 4.3. In these sections, they are denoted

by ay*/az and ay*/8_ rather than %_/a_ and 8g/ap.

2.2 ESTIMATION AND C0VARIANCE ANALYSIS

It is usually not necessary to estimate all of the state

parameters. However, it is necessary to provide estimates

for those measurement parameters that are not exactly known.

Therefore, a filter should produce estimates for a set of

solve-for parameters including a subset of the state param-

eters and a subset of the measurement parameters. The re-

maining parameters are then consider parameters whose values

may contain errors that are not reduced during the estima-

tion process ....

The state error, measurement parameter error, and random

excitation vectors and the state transition matrix are thus

partitioned as follows:

-h

A_x (t)I

m ....

: L g<t) (2.2-Ia)

_i splAp .... (2.2-ib)

A¥

0450
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[i ti:i_(t, to) :
(t,

_(t, to) = o,tto,]_(t_o_J, -t
- r;_,i;:,o;j

(2.2-ic)

(2.2-id)

_ [n_x(t)1where As(t) _ ...... solve-for parameter vector

AB(t) _ dynamic consider parameter error vector

A_ _ measurement consider parameter error vector

The error equations (2.1-4) and (2.1-12_can then be re-

written as

n_(t) = ¢(t, to ) n_(t o) + e(t, to ) An(t o ) + ¥(t, to ) (2.2-2)

n_(t) : Cs(t, to) n_(to) + _s(t, to) (2.2-3)

Ay i = G i As(ti) + F i A_ + _i (2.2-4)

where

0450
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[,t,o1• (t, to) -
O

eto
(2.2-6)

(2.2-7)

agiG. -

1 a; La;=
(2.2-8),

ag i
ri - -_--

ay

(2.2-9)

agi_ - [Sg__i

ax Lasx

(2.2-10)

I agi]ag__i___[a_ig: --

_; L°;_i o;j
(2.2-11)

We have assumed that no measurements depend directly on any

dynamic parameter that is not a solve-for parameter. Fur-

ther, we have assumed that the time evolution of the dynamic

consider parameters does not depend on any of the dynamic

solve-for parameters.

The function of a full estimation system is to determine an

estimate s*(t) given measurements Yi" ADEAS, however, does

not actually compute an estimate but determines how good an

estimate would be if it were produced in a given situation.

0450
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ADEAS does this by computing the estimation covariance ma-

trix defined by

P(t) -- E[As(t) As--T(t)] (2.2-12)

ADEAS thus performs linear covariance analysis for batch and

sequential filters. The covariance matrix P(t) then pro-

vides a statistical measure of how good an estimate could be

produced at time t of a given scenario.

The random excitation enters into this computation in the

form of the random excitation covariance matrix, which is

defined as

%
d(t, t o ) ---E[_(t, to) _T(t, to) ]

ds(t, to ) i dsB(t, t0! ]- dTa(t --) ! d_it? t0)
....,t o :

(2.2-13)

where

ds(t, to)--E[_s(t, tO ) _s (t, t0) 1

ti]
t _ (t, t'

f [ ' e(t, t')] Qu .... dt'
= _s(t, t') , '_T;t,

t o

da(t , to)--E[_8(t, to)_(t, to) ]

jtl I 1= 0 _8(t, t') Qu

to (t, t'

(2.2-15)

dt'

2-9
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o==_,,0>:=[_=<,,0__<t,0_]
t

t o

(2.2-16)

_e(t,, t')] Qu dr'
' (t, t'

f --

2.3 BATCH FILTER

A batch filter produces an estimate s"(to) at an epoch time

t o , based on a single batch of measurements y that may have

been made at various times. Thus,

Y -= YI' "''' Ym (2.3-1)

where each Yi is a scalar measurement.

and

Similarly,

T

_ _ [_, ..., _y=]

The batch filter produces an estimate s*(to) that gives y*,

which minimizes the cost function

(2.3-3)

0450
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where W _ positive-definite symmetric measurement weight

matrix

AS_ E s-_ - s*(t O) = s_- s_t O) + s_t o) - s*(t o)

= nS(to) - nSA

S_ 5 a priori estimate of s*(t o)

W A _ non-negative-definite symmetric a priori weight
matrix

2.3.1 ESTIMATION ERRORS

Since the batch filter determines s*(to), it is necessary to

relate Ay to AS(to). Substituting Equation (2.2-2) into

Equation (2.2-4) gives

Ay i = Gi[_(t i, to) nS(to) + e(t i, t o ) _(t o) + T(t i, to)]

m

+ Fi AYi + _i (2.3-4)

D

= F i As(t o ) + B i AS(t o) + Fi AYi + Ui + _i

where, using Equations (2.2-5) through (2.2-8)

_ 8gi 1
8gi to) I _ (2.3-5)

Fi - Gi *(ti' to) = [8--_x 4Ps(ti' : 8Sp

8g i

B i _ G i _(t i, t o ) = _ _(t i, t o )
8s

x

(2.3-6)

v

2-11
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Ui -_-Gi T(t i, to) = _i_ _s(ti' to)
8s x

(2.3-7)

f.

Then,

a_ : Fa_(t o) + ae (2.3-8)

where Ae - BAB(t ) + FAy + U + N
0

fl]F--- B ---

L-_m]
T

_- [_,---, _m]

_-?_, o..,_m]_

r -

(2.3-9)
_ ",i,-,

0450
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Substituting Equation (2.3-8) into Equation (2.3-3) for the

loss function then gives

V = [FAs(t o) + Ae] T W[FAs(t o) + Ae]

+ [As(t O ) - AsAIT WA[AS(t O) - As A]

= As--T(to) (WA + FTwF)As(to)+ As--T(to)(FTwAe - WAASA)

s(to) + WNI(FT W_e - WAAsA W_ _s(to)
(2.3-10)

÷ AJW e +   WAAsA

where

W N = W A + FTwF = normal matrix (2.3-11)

The final equality in Equation (2.3-10) is valid as long as

w N is nonsingular. The singularity (or ill-conditioning)

of W N indicates a lack of observability of the solve-for

parameters from the measurements y.

0450
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If W N is nonsingular and positive-definite, then it is clear

from the form of Equation (2.3-10) that V is minimized when

.I -_

(2.3-12)

= ASn(t O) + Asy(t O) + Ass(t o) + Asu(t o)

where

A_n(to)- w_l (WAA_A - FTW_) (2.3-13)

As(t o) - _w_i FTwrA_ (2.3-14)
r

V

_ (to) - -w_l FTws_(to) (2.3-15)

_su(to) - -w_1 FT_ (2.3-16)

The batch filter produces an estimate s*(t o) at the epoch

time to . This estimate may then be propagated to any other

time t using Equation (2.1-2). In doing this the estimation

v

0450
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errors As propagate according to Equation (2.2-2). Substi-

tuting Equation (2.3-12) for AS(to) into Equation (2.2-2)

gives

As(t) : _(t, to)[ASn(t O) + Asy(t o) + AsB(t o) +

+ G(t, t o ) AS(t o) + T(t, to)

n_u(to) ]

(2.3-17)

= ASn(t ) + _sy(t) + AsB(t) + ASu(t)

where

ASn(t) _ _(t, t o ) As n (t o )

ns (t) -¢(t, to ) as_Ct o)

(2.3-18)

(2.3-19)

AsB(t) --_(t, to) As 8 (t o ) + e(t, t o ) An(t o ) (2.3-20)

ASu(t) -_(t, t O ) Asu(t O) + _(t, t O ) (2.3-21)

2.3.2 C0VARIANCE

Equation (2.3-17) gives the estimation errors induced by the

systematic error sources A T and AS, the random error sources

and _ and the a priori error _s--A. It is assumed that all

2-15
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these error sources are uncorrelated.

P(t) is

The covariance matrix

+ •

P(t) _ E[As(t) As--Tct)]

= Pn(t) + PT(t) + Ps(t) + Pu(t)

(2.3-22)

where

-- --T

Pn(t ) --E[ASn(t ) Asn(t)]
(2.3-23)

pT(t) -E[AsT(t ) As-_(t)]
(2.3-24)

pB(t) _ E[AsB(t ) As_(t)]"
(2.3-25)

Pu(t) _ E[Asu(t) AS-_u(t)]
(2.3-26)

The following subsections discuss, in turn, each of these

contributions to the overall covariance.

2.3.2.1 pata Noise Contribution

From Equations (2.3-18) and (2.3-23) we have

Pn(t) = @(t, t o ) Pn(to) @T(t, t o )
(2.3-27)

where from Equation (2.3-13)

0450
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with

R =_ E[N---NTN] = diag (a 21 '

The a priori weight matrix is given by

(2.3-29)

W A = PA 1 (2.3-30a)

where the a priori covariance is

0

PAo _h e r

(2.3-30b)

with PAattitude being the a priori covariance of the atti-

tude error parameters, as given in Section 3.2 or 4.2.1, and

PAother being the a priori covariance of other solve-for

parameters, assumed to be diagonal:

2 2 )
PAother = diag(aAl, .... , aAnothe r (2.3-30c)

W is assumed to be a diagonal matrix of the form

W = diag (w I, ..., Wm)
(2.3-31)

0450
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Equations (2.3-28) through (2.3-31) give

,_7 !-

m

_n_o>_ (_+_ _ _ w_o_)_
i=l

(2.3-32)

where

m

wN _-wA + _ _T Fi w1 1

i=l

(2.3-33)

with the row vector F. given by Equation (2.3-5). For mini-
1

mum variance weighting, set W = R -I so that Pn(to) assumes

its minimum value Pn(to) = WN I. Note that this only

minimizes the data noise contribution to_the total covari-

ance.

2.3.2.2 Consider Parameter Contribution

It is assumed that all consider parameters are uncorrelated

so that

E[ATAV] = diag!271' "--, a217nT

E_(to) AsT(to)I = diagt°_' "'''°_1 n 8)

(2.3-34)

0450
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iF
Using this with Equations (2.3-14), (2.3-15),

(2.3-20), (2.3-24) and (2.3-25) gives

(2.3-19),

Py(t) = _(t,
T _T9_-(to) (t, to)to) 2 9__( a_iaY i 8Y i

"= (2.3-35)

PS( t )

n 8

= u8 (t, t o ) (t o ) +" @i(t, t o

i=l i 8B i

_--(t ) + Oi(t t o )
x (t, t o) 88 i O

(2.3-36)

where, from Equations (2.3-14) and (2.3-15),

m

___(t O) = -WNI _ FTFiwi (to) I
87 i=l Y

(2.3-37)

m

- I
_(to) =-WNI _ FIBiwi = [%(to) I

i=l
, a_ (to) ]

"'" [ a Bn 8

(2.3-28)

with

@(t, [e 1to) = 1(t, to) I ]• "" [ @ns(t' t o )

0450
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Fi, Fi, and B i defined by Equations (2.2-9), (2.3-5), and

(2.3-6), respectively; and w i and W N as in Sec-

tion 2.3.2.1. The quantities F i and B i are row vectors of

dimensionality n T and n 8, respectively.

2.3.2.3 Dynamic Noise Contribution

From Equations (2.3-16), (2.3-21), and (2.3-26) we have

Pu(t) = D(t, t o ) + _(t, to ) Pu(to) _T(t, t o )

•
(2.3-39)

- E[T(t, t o ) uT 1 WFWNI _T(t, t o )

where

[ T >]D(t, to) --E T(t, t o ) T (t, t o d s(t. t 0) :. 0 lo ...._oj (2.3-40)

with d defined by Equation (2.2-14), and
s

PU (tO) = WNIFTwE[_---T] WFWNI (2.3-41)

Using Equations (2.3-7), (2.3-9), and (2.3-31) gives

m

FT_ = E MG. _s(ti' to)
1

i=l

(2.3-42)
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F_
where

x

W,

1
(2.3-43)

with F i defined by Equation (2.3-5),

Equation (2.2-8).

and 8gi/8_ x defined by

I

The row vectors 8gi/Ss x have dimensionality equal to the

number of dynamic solve-for parameters.

From Equation (2.3-42)

FTwuu_WF 1i=l MGi i ' j=l MGj

m _.°

 iMoi T= _s(ti, t O ) (t i, t O) MG.

• _ 1 (2.3-44)

+ MGi j=l _s(ti' tO) _s(tj' tO) MGj
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Using this in Equation (2.3-41)
J

- i_ 1 ds(ti' t o ) M TPu (to ) = WNI MG i G i

+ MGi j=l

+ [_ MG. dsT(ti ,

LJ =i 3

(2.3-45)

• > t.
where d s is defined by Equation (2.2-14) and for t I 3

(2.3-46)

Using Equation (2.2-ic), we see that this is the upper left-

hand corner of the partitioned form of the larger matrix

d'(t i, tj)= E[_(t i, t o ) _T(tj, to) 3

ds(t i, tj) i dsB(ti' tJ) 1
..... l

Lds_(ti, tj) I d_(t i, tj)

(2.3-47)

This can be written, using Equation (2.1-8) and the fact that

[_ , )] . > tj, asE (t i, tj) _T(tj t o = 0 for t I

d'(t i, tj) = _(t i, tj) d(tj, t o )

= _(ti, to) _-l(tj, to) d(tj, t O )

(2.3-48)
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The group property of _, Equation (2.1-7) has been used to obtain

the last equality. Then combining Equations (2.2-id),

(2.2-13), (2.3-47), and (2.3-48) gives

d_(t i, tj) = [_s(ti, t o ) ]!8(t i, to)] _-l(tj, t o Ld s(tj,t O)

(2.3-49)

Substituting Equation (2.3-49) into Equation (2.3-45) then

gives

(2.3-50)

where

i-i

Qi - _ _-i

j=l

[ds!tj, t O ) I T

(tj, t O) [d s(tJ'to)jMGj
(2.3-51)

and

!

-MGi [_s(t i, t o ) I 8(t i, to) ]MG i ,

T[Sgi

= Fi_Sx _s (t

i to) l B w.' ! 1
!

(2.3-52)

_rll i

where B. is defined by Equation (2.3-6), and Equa-
l

tion (2.3-43)" has been used in the last step.
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From Equations (2.3-42), (2.3-46), (2.3-49), and (2.3-51) we

also have:

m

to]
i=1

k-I

_ .o_[_t_to>_t _o>I
i=1

m

z tel
i=k

(2.3-53)

k-I m

= dsT(t t i) + _ MG iMGi , d s (t i, t)
i=l i=k

+ Q_ qs-l(t,

ds(t' to) I

FZ_ x

where k is chosen so that tk_ 1 < t _ t k and

m

i=k 1

(2.3-54)

Then,

(2.3-55)

and P (t) can be computed by substituting Equations (2.3-40),
U

(2.3-45), and (2.3-55) into Equation (2.3-39).
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2.3.3 COMPUTATION

The analysis equations presented in the previous subsections

have been carefully derived to a11ow efficient evaluation.

This subsection outlines a procedure to efficiently perform

these computations. This procedure is only intended to show

the overall structure of the computations and does not neces-

sarily cover all microefficiency details. The procedure has

two stages: it first computes analysis results at the epoch

time t o , and then uses these results to compute the various

covariance matrices at a set of "output times" r I, ..., r_.

It is assumed that t o _ t I _ t 2 _ ... _ tm and that t o = r 1

< r 2 ... < r£.

Stage i: Compute Epoch Errors

The stage 1 procedure assumes that the following are avail-

able:

°

1

W A, w i

8gi/Ss x

F°

1

F,

1

B ,

1

D(t i, t o)

_(t i, t o)

_s(ti , t o)

_--.b

See Equation (2.3-29)

See Equations (2.3-3) and (2.3-31)

See Equation (2.2-8) and Sections 3.3 and

4.3

See Equation (2.3-5)

See Equation (2.2-9) and Sections 3.3 and

4.3

See Equation (2.3-6)

See Equation (2.3-40) and Sections 3.2 and

4.2

See Equation (2.2-5) and Sections 3.2 and

4.2

See Equation (2.2-idi and Sections 3.2 and

4.2
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8(t i, t o) See Equation (2.2-1d) and Sections 3.2 and

4.2

_-l(t i, t o) See Equations (2.1-5) and (2.1-7) and Sec-

tions 3.2 and 4.2

The procedure produces the covariance matrices P and P and
n u

the sensitivity matrices 8s/87 and 8s/88, all at the epoch

time t O , and the intermediate matrices M_., PN" Qi' Q'' and
1

QF" These results are accumulated during a single pass over

all the measurements.

I .

2.

' ' QF' and Q1 to zeroInitialize M n, M u My M 8, Q',

For i + 1 to m, do

ao

b.

Co

M n _ M n + F T F. w 2 a 2
1 1 1 1

T
M *- M + F_ F. w.
7 7 i I I

MG F.T ag__i
i 8s wi

X

d. M F _ F T F. w.1 1 1

e. M B _ F_ B. w.
1 1 1

f ,

i .

Let MF _ IMFs i| ME I (with s°ive-f°r and c°n-p

co umn ,
T T

M u *- Mu + M G d s(t i, to ) M G + M_. Q i + Q i MGT

M 8 _ M 8 + M B

Qi+l ÷ Qi + _-l(t

J" QF + QF + MF

k. Q' ÷ Q' + M6.
1

1 1

I ds(t_' to) I T

i' to) MG
d T
sS(ti • t o)

/

V
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.

•

-i
PN _ (WA + QF )

Pn *
PN (WA + Mn ) PN

5. Pu _ PN Mu PN

• for minimum variance

weighting

, otherwise

• 8_(to) _ -PN M
aT

. 8S(to) *" -PN M8
88

Staq_ 2: Compute Error AnalYsis R_sults

In addition to the results of stage i, the stage 2 procedure

assumes that the following are available:

ayi a' B i

$(Ti' to)

D(T i , to)

8(T i , to)

See Equation (2.3-34)

See Equation (2.2-5) and Sections 3.2 and 4.2

See Equation (2.3-40) and Sections 3.2 and 4.2

See Equation (2.2-7) and Sections 3.2 and 4.2

The procedure produces the covariance matrice Pn(ri),

py(_i) , ps(_i), Pu(ri), and P(_i ) for each output time ri:

i. Set k _ 1

• For i ÷ 1 to _, do

a. Pn(ri ) ÷ ¢(ri' to) Pn sT(T i, to)

b.
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in

n
7

Py(T i) ÷ _ a2 _- 8s-T

j=l Yj 87j 8yj

A_ I- .

Co

d .

eo

Let 8_ = _(Ti' to) 8_ (tO) + 8(ri' to)

E !

-- !
8s!

= 8811 -'"
I

in

n8

sj asj 8s.
j=l 3

While t k < Ti' do

(i) Q' *- Q' - M_k

(2) k 4- k + 1

+ Q T 4p-l(T i to ) ...... ,e !.....

t I

to>f0
in

j,

0450
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f. P(r i) _ Pn(ri) + Py(ri) + PS(Ti) + Pu(ri)

2.4 SEQUENTIAL FILTER

A sequential filter produces an estimate s*(t) based on

measurements taken at discrete times t i S t. Between

distinct measurement times, the state estimate x*(t) is pro-

pagated using Equation (2.1-2). For each measurement Yi'

the solve-for parameters are updated based on the pre-update

state x*(i-) and the measurement. Typically, this update

has the following form:

s*(i+) = s*(i-) + KiAY i (2.4-1)

where s*(i+) and s*(i-) denote the estimate of solve-for

parameters immediately after and immediately before incor-

porating the information contained in the'measurement. This

notation must be distinguished from s*(ti), which denotes

the solve-for parameter estimate incorporating the informa-

tion contained in all the measurements at t i, which may

include measurements other than Yi" The gain matrix K i

determines how much the propagated state is corrected, based

on the measurement residual AYi; this is a column vector

with dimension equal to the number of solve-for parameters.

2.4.1 ESTIMATION ERRORS

The estimation error immediately after an update is

As(i+) = s(ti) - s*(i+) = s(ti) - s*(i-) - KiAY i

= As(i-) - KiAY i,

(2.4-2)

/
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since the true state is continuous at t i.

tion (2.2-4) for Ay i gives

Substituting Equa-

As(i+) = (I - KiG i) AsCi-) - Ki(riA7 + _i ) (2.4-3)

We divide As(t) into separate contributions due to measure-

ment noise, measurement consider parameters, dynamic con-

sider parameters and dynamic noise:

As(t) = ASn(t) + Asy(t) + Ass(t) + ASu(t) (2.4-4)

These obey the update equations

ASn(i+ ) = (I - KiG i) ASn(i-) - _i_i (2.4-5)

7AsT(i+) = (I - KiG i) (i-) - KiFiA7 (2.4-6)

Ass(i+ ) = (I - KiG i) As8(i-) (2.4-7)

Asu(i+ ) = (I - KiG i) Asu(i-) (2.4-8)

consistently with Equations (2.4-3) and (2.4-4). If ti=ti+ I,

then As(i+) = As(i+l-), and similar relations hold for AN n ,

Asy, As 8, and As u.

If t i _ ti+ I, which means that Yi is the last measurement

processed at t i, As(t i) is equal to A_(i+), since it

incorporatesthe information contained in all the measure-

ments for times less than or equal to t.. Then from
1
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Equation (2.2-2), propagating the estimate s"(t i) will

< t < given byresult in an error for t i _ ti+ 1

ns(t) = ¢(t, ti) A_(t i)
0

+ ®(t, ti) nS(t i) + T(t, t i) (2.4-9)

The limit of As(t) as t approaches ti+ 1 is the estimate

error As(ti+l-). Inserting Equations (2.2-3) and (2.4-4)

into Equation (2.4-9) gives the following propagation equa-

tions for the noise and consider components of the estimation

error

Asn(t ) = _(t, t i) Asn(t i) (2.4-10)

- n_Asy(t) = _(t, ti) (t_) (2.4-11)

A_sCt) = _(t, t i) AsBCt i) + ®(t, t i) _BCti, to) nS(t o)

(2.4-12)

Asu(t) = _(t, t i) ASu(t i) * ®(t, t i) _B(ti, t o )

m

+ T(t, t i)

(2.4-13)

The complete specification of As n, ANy, As 8,

the initial conditions

and A_ requires
u

aSn(t O) = As(t O) (2.4-14)

m

As _(t o) = n_S(to) = n_u(t o) : 0 (2.4-15)
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2.4.2 COVARIANCE

Equation (2.4-4) gives the estimation errors induced by the

systematic error sources A_ and A8 and the random error

sources 5 and _i" It is.assumed that all these error

sources are uncorrelated. The covariance matrix P(t) is then

•;t

2

P(t) _ E[As(t) As--Tct)]

= Pn(t) + PT(t) + Ps(t) + Pu(t)

(2.4-16)

where

+ D*(t, t o ) (2.4-17)

P (t) ---E (t) A (t)
(2.4-18)

(2.4-19)

Pu(t) -- E[Asu(t ) AS_uu(t)] - D*(t, t o )
(2.4-20)

The matrix D*(t, t o ) represents an estimate of the dynamic

noise used to compute the gain matrix. It obeys the update

equation at measurement Yi:

D*(i+, t o ) = (I - KiG i) D*(i-, t o ) (I - KiGi )T (2.4-21)
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If t i M ti+ I,

. <t <
t I -- ti+ 1

D*(t,to) obeys the propagation equation for

D*(t, t o ) = _(t, t i) D*(t i, t o ) _T(t, t i)

+ D*(t, t i)

(2.4-22a)

with

d _(t'
D*(t, t i) = 0

0]
10J (2.4-22b)

and

i Q_'[ L " "¢_ST(t' t' 1

I 8(t, t')] -- dt'
d*(ts , ti ) = [_Ss(t' t') , |8_; t- t')

t i
.4-22c)

Q_ is a diagonal matrix of estimates of the covariances of

the dynamic noise. The matrix D*(t, t o ) has the initial

value D*(t O, t O ) = 0.

The following subsections discuss each of these contributions

to the overall covariance. In each case, the propagation

step is unnecessary if t i = ti+ I.

2.4.2.1 Noise-Induced Contribution

From Equations (2.4-i0), (2.4-17), and (2.4-22) we have

Pn(t) = _(t, t i) Pn(ti) _T(t, t i) + D*(t, t i) (2.4-23)
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for t i _ t < ti+ 1. From Equations (2.4-5), (2.4-17), and

(2.4-21), the covariance update is

Pn(i+) = (I - KiG i) Pn(i-)(I - KiGi )T + KiRiK _ ' (2.4-24)

with

(2.4-25)

The initial value Pn(to) is the a priori covariance PA'

given by Equation (2.3-30b).

For Kalman filtering, K i is chosen to be the Kalman gain

defined by

-i

Ki = Pn(i-)GT[ G GT + Ril
1 i Pn (i-) 1

Note that a Kalman filter minimizes only the noise-induced

contribution to the overall covariance.

2.4.2.2 Consider Parameter Contribution

It is assumed that all consider parameters are (initially)

uncorrelated so that

(2.4-26)

C

m[_7 _T] _ diag 12_l' " " ° ' (_%{n2 _

(2.4-27)

, • • • ,

E (t O ) A_T(to ) = diag 81 n8

(2.4-28)
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,i

Using this with Equations (2.4-18) and (2.4-19) and defining

8_/8_ and 8s/8_ so that

_7(t) --_(t)_ AT
87

(2.4-29)

_8(t) = 8s_ (t) _B(t o) (2.4-30)
a8

then gives

n

P7 (t) = X a2 _-- (t aS (t (2.4-31)

i=l _'i 87i

n_

pB(t) = Z a2 _-- (t [SS_i (t) (2.4-32)
i=l 8i 88i

where, from Equations (2.4-11) and (2.4-12),

(2.4-33)

0450

8__ (t) = _(t, t i) 8__s (ti) + O(t, t i) _8(t i,
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Using Equations (2.4-29) and (2.4-30) in Equations (2.4-6)

and (2.4-7) gives the following update equations:

8s (i+) = (I - KiG i) 8s (i-) - K.r. (2.4-35)

!__ (i+) = (i - _isi) 9__ (i-)
8B 8B

(2.4-36)

Both these matrices are zero at the initial time t o .

2.4.2.3 R@$idual Dynamic Noise Contribution

From Equations (2.4-13), (2.4-20), and (2.4-22) we have

Pu(t) = ¢(t, ti) Pu(ti) @T(t, ti) + _(t, ti) PuB(ti) oT_t., ti)

8T
+ 8(t, t i) P_s(ti) _T(t, t i) + @(t, t i) ds(t i, t o ) (t, t i)

+ D(t, ti) - D*(t, t i)

(2.4-37)

where

<t> to>] (2.4-38)

and d 8 is defined by Equation (2.2-15).

It follows from Equations (2.1-8), (2.2-ic), and (2.2-id)

that

_8( t, to ) = _B(t, ti) _8( t

m

i' to) + _8 (t' ti) (2.4-39)
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Using this and Equation (2.4-13) in Equation (2.4-38) gives

Pub(t) : _(t, t i) PuB(ti) ¢_(t, t i)

e

+ 8(t, t i) dB(t i, t o ) _(t, t i)

+ DsB(t, t i)

(2.4-40)

where

dsB(t' ti) 1

with ds8 given by Equation (2.2-16).

Using Equation (2.4-39) in Equation (2.2-15) gives

dB(t , to) : CB(t, ti) dB(t i, to ) ¢_(t, t i) + dB(t, t i)

(2.4-42)

From Equations (2.4-8), (2.4-20), and (2.4-21), the

covariance updates for Pu and Pub are

Pu(i+) = (I - KiG i) Pu(i-) (I - KiGi )T

Pub(i+) = (I - KiG i) Pub(i-)

Both Pu and Pub are zero at the initial time t o .

2.4.3 COMPUTATION

The analysis equations presented in the previous subsections

have been carefully derived to allow efficient evaluation.

This subsection outlines a procedure to efficiently perform
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these computations. This procedure is only intended to show

the overall structure of the computation and is not concerned

with all microefficiency details. The procedure propagates

an initial covar_ance PA to the output times _I' ..., r£,

performing measurement updates at times t I, ..., t m. It is

< t I < t 2 < ... < t m and that t o = r I < T 2 <assumed that t o ....

... < T£.

The procedure assumes that the following are available:

PA

l

Go

1

_o

1

¢(t, t')

®(t, t')

t')

 8(t, t')

D(t, t')

d(t, t')

d8(t, t')

See Equation (2.3-30) and Sections 3.2 and

4.2

See Equation (2.4-25)

See Equation (2.2-8) and Sections 3.3 and

4.3

See Equation (2.2-9) and Sections 3.3 and

4.3 -_°

See Equation (2.2-5) and Sections 3.2 and

4.2

See Equation (2.2-7) and Sections 3.2 and

4.2

See Equation (2.1-5) and Sections 3.2 and

4.2

See Equation (2.2-id) and Sections 3.2 and

4.2

See Equation (2.3-40) and Sections 3.2 and

4.2

See Equation (2.2-13) and Sections 3.2 and

4.2

See Equation (2.2-15) and Sections 3.2 and

4.2
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Dss(t, t' )

D*(t, t')

ayi, aB.(to)1

See Equation (2.4-41) and Sections 3.2 and

4.2

See Equation (2.4-21)

See Equations (2.4-27) and (2.4-28)

The procedure produces the covariance matrices Pn(Ti),

P7(_i), Ps(ri), Pu(ri), and P(_i) and the analysis matrices

_(r i, Ti_l) and d(ri, ri_l) for each output time ri:

" ÷ PA1 Set Pn

Initialize 8_/8_, 8s/88, Pu' Pus' d, and d 8 to zero

Initialize _ to the N x N identity matrix

Set i _ I, k ÷ I, t' _ t
o

2. While i < £ do:

Let t = min (r i, tk) in

a. If t _ t' then:

(1) Pn ÷ _(t, t') Pn _T(t' t') + D*(t, t')

8_ g_
(2) -- ÷ ¢(t, t')

8Y 8y

(3)

(4)

a___ ¢(t, t'> !__ + s(t, t') @S (t, t')
B8 B8

Pu _ $(t, t') Pu _T(t, t')

@T
+ _(t, t') PuB (t, t')

+ 0(t, t') pT _Tu8 (t, t')

+ @(t, t') d 8 @T(t, t')

+ D(t, t') - D*(t, t')
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Do

(5)

(6)

(7)

(8>

PuB _ _(t, t') PuB #_(t, t')

+ 8(t, t') dB_(t, t') + Dss(t, t')

d 8 *-4_8(t, t') dB_(t, t') + dB(t, t')

+ _(t, t')

d *-q%(t, t') dqbT(t, t') + d(t, t')

If t = t k then:

Let

in

oT( ok2>lK -- Pn k Gk Pn G +

M = I - KG k

M T 2 K T
(I) Pn *- MPn + K Uk

(2) - KF k

(3)

<4>

(5)

(6)

-- w

8s +Mgm
88 88

p 4- MP M T
U U

PuB _ MPuB

k ÷ k + 1

0450

2-40

L.



C• If t = r i then:

<Ia_ [a_li'"i

8_ = 881 " 188n 8

d.

in

(i) Pn(ri ) + Pn

n T

n 8 T

j =l 8j

(4)

(5)

(6)

(7)

(8)

PU (ri) + PU

P(ri) ÷ Pn(ri) + Py(r i) + PB(ri) + Pu(ri)

_(r i, Ti_l ) _

d(ri, ri_l) _ d

Reset d to zero and _ to the N x N

identity matrix

(9) i *- i + 1

t' _- t
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SECTION _ - SPIN-STABILIZED SPACECRAFT MODELS

As Section 2 discussed estimation filtering in a general

sense, this section provides specific attitude and sensor

models for spinning spacecraft. These models provide the

basis for the construction of the state transition, measure-

ment partial derivative, and random excitation matrices used

in Section 2.

3.1 ATTITUDE GENERATION

For spin-stablized spacecraft,the attitude is determined by

the direction of the spin axis. The nominal spin axis is

assumed to be fixed in inertial space and is specified by

its right ascension _n and its declination 6n as shown in

Figure 3-1. The actual spin axis may drift from this iner-

tially fixed nominal position. ADEAS provides a model for

sinusoidal variations of the actual spi_-axis about the nom-

inal axis:

_*(t) = _n + a sin [_ <t - t o ) + b ] (s.Z-l)

6*(t) = 6 n + a 6 sin [_ (t - t o ) + b 6] (3.1-2)

where the amplitudes a s and a 6 are constant dynamic param-

eters, while the frequency _ and the phases b and b 6 are

assumed to be exactly known. The spin-axis attitude defined

by _* and 6" is used in all sensor model computations.
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X I

ZI

NOMINAL ....
SPIN AXIS

I

0

Figure 3-1. Right Ascension and Declination of the Nominal

Spin Axis

3.2 DYNAMIC ERROR MODEL

If we define a state vector x by

x = (3.2-1)

LaaJ

then differentiating Equations (3.1-1) and (3.1-2) gives the

dynamic model for spin-stablized spacecraft in the form of

Equation (2.1-1):

0450

x(t) :

"a _ cos [_(t - t o) + b ]"

a 6 _ cos [_(t - to ) + b6]

0

0

3-2

+

u(t)

u6(t)

0

0

(3.2-2)



where u and u 6 are dynamic noise processes that induce

additional attitude variations.

From Equation (3.2-2), the state transition m_trix, as de-

fined by Equation (2.1-5), is then

@(t, t') :

1 0 @_ 0

o l o @6

0 0 1 0

0 0 0 1

(3.2-3a)

with

@_ _ sin [_(t - to) + b ] - sin [_(t' - t o ) + b ] (3.2-3b)

• i."-.

and

@6 { sin [_(t - to) + b 6] - sin [_(t' - t o ) + b 6]
(3.2-3c)

The inverse of the state transition matrix is

@-l(t, t') :

I i 0 -@c,_ 0

o 1 o -@6

0 0 1 0

0 0 0 1

(3.2-4)

The a priori covariance of the attitude error parameters is

PAattitude = diag u s ,
(3.2-5)

-%
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Defining _ as in Equation (2.1-6) the random excitation

matrix is

d(t, t') ---EI_(t, t') _T (t,

"Qo_ 0 0

0 Q6 0

0 0 0

.0 0 0

0

At

0

0,

(3.2-6)

where

[u ]E (t) uo_(t') = Q_ 6(t - t')

(3.2-7)

= Q6 6(t - t')

The partitioning of d in Equation (3.2-6) is not the same as

the partitioning in Equation (2.2-13); the two partitionings

are related by row and column interchanges depending on the

selection of dynamic solve-for and consider parameters.

3.3 SENSOR MODELS

The spin-axis sensors modeled by ADEAS are

• IR horizon sensor

• V-slit star scanner

• V-slit Sun sensor

For a spin-stabilized spacecraft, the primary attitude in-
A

formation is given by the spin-axis direction U, which is

0450
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expressible in terms of its right ascension _ and declina-

tion 6 in GCI coordinates as

cos _ cos
cos 6 sin

sin 8

(3.3-l)

The sensed data can be expressed in terms of a reference
A

vector R, which is the unit vector in the direction of a

sensed object. '_

Since the spin-angle itself is not of interest, the direc-

tion of the projection of the reference vector R in-the

spin-plane conveys no attitude information. Meaningful

measurements of any reference vector R give the following

form of the measurement function h(x, p') of Equa-

tion (2.1-13): _.

h(x, p') = h(C r, p') (3.3-2)

where h is a sensor-specific function

A

and C r is the projection of the unit reference vector R onto

the spacecraft spin axis, or cosine of the angle between _I

and _I;

C r = R I cos 6 cos _ + R I cos 6 sin 0c + R I sin _ (3.3-3)
x y z

where the superscript I denotes GCI coordinates.

For all spin-stablized spacecraft sensors, the functional

dependence of the measurement on the spacecraft attitude,

parameterized by the right ascension and declination of the

spin axis, is through the projection C r. Since the attitude

errors are always a subset of the solved-for vector, the

0450
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partial derivatives of the measurements with respect to the

attitude are computed as

By* 9_h__8Cr

%_ 8C r 8_
8h [-RxI cos 6 sin _ + R I _38C r Y cos 6 cos (3.3-4a)

8h [-RI sin 6 cos _ - R I sin 6 sin _ + R I cos Sl

8C r L x y z j

(3.3-4b)

The formulation of h and its partial derivatives with re-

spect to the projection C r is thus a key to the sensor-

related error analysis computations. The expressions for

h(C r, 5') are given below for each sensor as well as a com-

plete list of all partial derivatives for each sensor.

3.3.1 IR HORIZON SENSOR MEASUREMENT MODEL AND PARTIAL
DERIVATIVES

The measurement model for the IR horizon sensor is shown in

Figure 3-2. This model describes both the conical scan IR

sensor, which has a fixed scan cone angle 7, and the pano-

ramic attitude sensor (PAS), which has a varying scan cone

angle. Since the scan cone angle of a PAS is constant for

each complete revolution of the spacecraft, the analysis can

be carried out for a fixed scan cone angle. The analyst

defines the parameters describing how the scan cone angle

changes per revolution. If a zero incremental change is

specified, the PAS will be identical to the conical scan IR

horizon sensor. If the increment is not zero, the scan cone

angle will increase each revolution until it reaches a user-

defined upper limit and then decrease by the same incremental

amount until it reaches the user-defined lower limit. This

0450
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Figure 3-2. IR Horizon Sensor Geometry, Sun Indexed
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is the only ADEAS sensor model that uses the projections

onto the spacecraft spin axis of two external reference vec-

tors, i.e., the Sun vector and the Earth vector. The meas-

urements of the horizon sensor are the Sun to Earth-in

azimuth, Sun to Earth-out azimuth, Earth width, and Earth

azimuth with respect to the Sun. The measurements are cal-

culated as

i- ,-_.

y* = Earth width = h(Cs, CE)

-z Icos 0 - cos n =os
---n = 2 cos I sin q sin 7 I

(3.3-5)

y* = Earth azimuth = h(Cs, CE)

- _E = c°s-I Ic°s _ -c°s q _°S 8Isin q sin (3.3-6)

.,m._,b

1 n (3 3-7)y* = Earth-in = h(Cs, CE) = AIN = _E - 2

y* = Earth-out = h(Cs, CE) = AOU T = _E + _ _ (3.3-8)

where

0450

A IC S = projection of the unit Sun vector S onto the

spacecraft spin axis = cos 8 = _I . _r

A IC E = projection of the unit Earth vector E onto the

spacecraft spin axis = cos q = _I . OI

8 = Sun angle, angle between the spin axis and
the Sun vector

q = Earth angle, angle between the spin axis and
the Earth vector

cos _ = projection of the Sun vector on the Earth

vector

: .

p = Earth angular radius

= sin -I [(r + ht)/R]

r ='Earth radius (km)

h t = IR tangent height (km)

3-8



R = magnitude of the spacecraft position vector
(km)

y = sensor scan cone angle (deg)

Equation (3.3-6) does not uniquely determine _E; the sign

of the angle is not determined. To resolve this ambiguity
-i

the sign of a vector product is used. Assume that the cos

function returns an angle in the range 0 _ _E _ 180.

If (_I x _I) • _I _ 0 then Equation (3.3-6) gives the cot-

rect range.

If (_I x _I) • _I < 0 then use the following equation,

-l I , - cog n cos
_E = 360o - cos

I sin q sin 8 i
(3.3-9)

The measurement parameters, which the user may select as

either solved for or considered, for the--fR horizon sensor

i ,

2.

3.

4.

are

,

6.

7.

The scan cone angle (deg)

The Earth angular radius (deg)

The distance from the Earth to the spacecraft (km)

The IR tangent height (km)

The Earth-in bias (deg)

The Earth-in scale factor

The amplitude of the Earth-in periodic measurement

error (deg)

The Earth-out bias (deg)

The Earth-out scale factor

The amplitude of the Earth-out periodic measurement

error (deg)

Q

9.

i0.

3-9
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ii. The Earth width bias (deg)

12. The Earth width scale factor

13. The amplitude of the Earth width periodic measure-

ment error (deg)

14. The Earth azimuth bias (deg)

15. The Earth azimuth scale factor

16. The amplitude of the Earth azimuth periodic meas-

urement error (deg)

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

I. The initial sensor scan cone angle (deg)

2. The incremental scan cone angle (deg)

3. The minimum scan cone angle (de_i

4. The maximum scan cone angle (deg)

5. The IR tangent height (km)

6. The frequency and phase angle of the Earth-in peri-

odic measurement error

7. The frequency and phase angle of the Earth-out

periodic measurement error

8. The frequency and phase angle of the Earth width

periodic measurement error

9. The frequency and phase angle of the Earth azimuth

periodic measurement error

When scheduling the IR horizon sensor the user may use one

or two of the sensor outputs for the error analysis computa-

tions. Since all outputs have units of degrees, the user-

supplied value of the sensor white noise standard deviation

0450
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for each measurement has units of degrees. The errors in the

Earth-in and Earth-out measurements are assumed to have equal

standard deviations aA and to be uncorrelated with one
another. Then, it follows from Equations (3.3-7) and (3.3-8)
that the errors in the Earth-width and Earth azimuth measure-

ments are uncorrelated, and that their standard deviations

are

(3.3-10)

v

The correlations between the pairs (Q, AIN), (_, AOUT),

(_E' AIN)' and (_E' AOUT) are ignored if any such pair is

selected.

Partial of the Earth azimuth wrt the pro_4ction of the Sun

vector S:

8_ E cos q - sin n cot 8 cos _E

8C s sin n sin 8 sin _E
(3.3-1i)

Partial of the Earth azimuth wrt the projection of the Earth
A

vector E:

8_ E COS B - cot _ sin B cos _E

8C E sin n sin 8 sin _E
(3.3-12)

Partial of the Earth azimuth wrt the sensor scan cone angle:

0450

8_ E

8y - 0 (3.3-13)
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Partial of the Earth azimuth wrt the Earth angular radius:

8_ E
-- = 0 (3.3-14)
8p

Partial of the Earth azimuth wrt the IR tangent height:

8_ E

8h t 0
(3,3-55)

Partial of the Earth azimuth wrt the distance from the

spacecraft to Earth:

8_ E
-- : 0 (3 3-16)8R

Partial of the Earth azimuth wrt the bias b:

i (3 3-17)8b =

(C_;.-..,

Partial of the Earth azimuth wrt the scale factor k:

8#_ -i I cos _ - cos n cos 81

8k _ h(Cs' CE) = cos 1 sin n sin 8 I (3.3-18)

Partial of the Earth azimuth wrt the amplitude of the peri-

odic error:

8_ E

8a = sin (_t + _) (3.3-19)

0450
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Partial of the Earth width wrt the projection of the Sun

/k

vector S :

8n
- 0 (3.3-20)

8C S

Partial of the Earth width wrt the projection of the Earth
fk

vector E:

icesn cos cot]@C E - 2 (3.3-21)sin 7 sin q sin D_
2

Partial of the Earth width wrt the sensor, scan cone angle:

0 icessincos01-- = 2 2 - sin_.y cos q

ay sin 7 sin q sin _D
2

(3.3-22)

Partial of the Earth width wrt the Earth angular radius:

[ sin0]--=2
8p sin 7 sin q sin

(3.3-23)

Partial of the Earth width wrt the IR tangent height:

8h t = _ R cos p
(3.3-24)

Partial of the Earth width wrt the distance from the space-

craft to Earth:

a_ 8_ tan

BR 8p R
(3.3-25)
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Partial of the Earth width wrt the bias b: v

8n
-- = 1 (3 3-26)8b

Partial of the Earth width wrt the scale factor k:

9__8k_ h(Cs' CE) = 2 cos
-I I¢0S P - COS _ COS YI

I sin q sin y
(3.3-27)

Partial of the Earth width wrt the amplitude of the periodic

error:

8n
8a = sin (_t + _) (3.3-28)

Partial of the Earth-in angle wrt the projection of the Sun

vector S:

8AIN @_E

8C s %C s
(3.3-29)

Partial of the Earth-in angle wrt the projection of the
A

Earth vector E:

8AIN 8_E 1 8n

8C E - 8C E 2 8C E
(3.3-30)

Partial of the Earth-in angle wrt the sensor scan cone angle:

aAIN 1 8n
= - (3.3-31)

8Y 2 8y

O45O
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Partial of the Earth-in angle wrt the Earth angular radius:

8AIN 1 8n

a9 - 2 a9 (3.3-32)

Partial of the Earth-in angle wrt the IR tangent height:

8AIN 1 8fl

8h t 2 8h t
(3.3-33)

Partial of the Earth-in angle wrt the distance from the

spacecraft to Earth:

? ':;

aAIN 1 8n
- (3.3-34)

@R 2 @R

_b

Partial of the Earth-in angle wrt the bias b:

8AIN

8b - 1 (3.3-35)

Partial of the Earth-in angle wrt the scale factor k:

8AIN

8k = h(Cs' CE) = SE - _n (3.3-36)

Partial of the Earth-in angle wrt the amplitude of periodic

error:

aAIN

aa - sin (_t + _) (3.3-37)
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Partial of the Earth-out angle wrt the projection of the Sun
/%

vector S :

@AoI!T 8_ E

8C s 8C s
(3.3-38)

Partial of the Earth-out angle wrt the projection of the
A

Earth vector E:

8AouT 8_E 1 8n

8C E - 8C E + 2 8CE
(3.3-39)

Partial of the Earth-out angle wrt the sensor scan cone

angle:

8AouT 1 8n --"

87 - 2 87 (3.3-40)

Partial of the Earth-out angle wrt the Earth angular radius:

8AouT i 8n
- (3.3-41)

8p 2 8p

Partial of the Earth-out angle wrt the IR tangent height:

(3.3-42)

Partial of the Earth-out angle wrt the distance from the

spacecraft to Earth:

0450

8_AQgT 1 8n

8R - 2 8R
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Partial of the Earth-out angle wrt the bias b:

aAou T
- 1

8b (3.3-44)

Partial of the Earth-out angle wrt the scale factor k:

8AouT 1

~ h(Cs' CE) = _E + _ n (3.3-45)

Partial of the Earth-out angle wrt the amplitude of periodic

error:

8Aou_ sin (_t + _) (3 3-46)
8a =

3.3.2
_b

V-SLIT STAR SENSOR MEASUREMENT MODEL AND PARTIAL

DERIVATIVES

The V-slit star sensor contains two slits, one parallel to

the spin axis, the other at an oblique angle, as in Fig-

ure 3-3. The raw measurement is the time At between the

crossing of each slit by the star image focused by an op-

tical system. ADEAS uses as its preprocessed measurement y*

the rotation angle of the spacecraft between the star cross-

ings, given as eat where _ is the angular rotation rate of

the spacecraft. This measurement is a function of the cosine

of the star angle a between the star vector _I and the

spin vector as

0450

y* _ M = rotation angle = h(Cs)

= sin -I [tan (y - a) tan _.] + A

3-17
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where Cs = projection of the unit Sun vector SIAonto the

spacecraft spin axis = cos a = _I . U I

= star angle

7 = mounting angle of the optical axis of the star

scanner

E = tilt of oblique slit

A = separation of center of slits, the angle between

the two lines perpendicular to the spin axis from

that axis to the intersections of the slits with

the plane scanned by the optical axis

Though this expression is exact only when the mounting angle

is 90 degrees and there is no rotation of the star scanner

about its optical axis, it is a good approximation when the

lengths of the slits are small, typically i0 degrees.

To determine the sensitivity of the measurement with respect

to a rotation of the slits about the optical axis, a differ-

ent measurement model is used.

sin -I
y* = rotation angle = h(Cs) =

-I
- sin [tan (7 - _) tan 8]

+
B A - B

COS 8 + (i - tan 8 tan Z) cos 8

_°

[tan (7 - a) tan (Z + 8)]

(3.3-48)

where 8 = rotation of the slits about the optical axis

B = angular distance between the optical axis and
the vertical slit

The last two terms of this model are based on plane geometry

(Figure 3-4).

The geometrical limitation on the visibility of the V-slit

star sensor requires that the star angle be between the min-

imum and maximum values of

0450

1 _ (3.3-49)
_min = _ - 2
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1

ama x = y + _ _ (3.3-50)

where _ is the length of the vertical slit.

The measurement parameters, which the user may select as

either solved for or considered, for the V-slit star sensor

are

I. The measurement bias (deg)

2. The measurement scale factor

3. The amplitude of the measurement periodic error

(des)

4. The separation of the center of the slits (deg)

5. The tilt of the oblique slit (deg)

6. The rotation of the slits about the optical axis

(deg) _'"

Even though the rotation of the slits about the optical axis

is always nominally 0 degrees, it may have a specified un-

certainty and hence be designated as an error parameter.

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

Or considered, the analyst must also provide the following:

i. The frequency and phase angle of the periodic meas-

urement error

2. The separation of the center of the slits (deg)

3. The tilt of the oblique slit (deg)

4. The angular distance between the optical axis and

the vertical slit (deg)

5. The length of the vertical slit (deg)

e

0450
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When scheduling the V-slit star scanner, the analyst does

not have a choice of measurements to use, since there is

only one. Since the rotation angle has units of degrees,

the sensor white noise standard deviation has units of

degrees.

Partial of the rotation angle M wrt the projection of the
A

star vector S:

BM i 8M

8C s sin a 8y (3.3-51)

Partial of the rotation angle M wrt the separation of the

center of the slits:

8M 1 (3 3-52)
8A --

Partial of the rotation angle M wrt the tilt of the slit:

8M tan (y - c)
= 2 (3.3-53)

BE cos Z cos (M - A)

v

Partial of the rotation angle M wrt the mounting angle of

the optical axis:

8M tan Z

By cos 2 (T - a) cos (M-A)
(3.3-54)

Partial of the rotation angle M wrt rotation of the slits

about the optical axis, from Equation (3.3-43):

@_MM=
88 (A - B) tan F. + tan (y - a) tan 2 (3.3-55)

0450
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in the limit 8 _ 0 and y - a << I.

Partial of the rotation angle M wrt the bias b:

(3.3-56)

Partial of the rotation angle M wrt the scale factor k:

8_MM
h(Cs) = A + sin -I [tan (Y - u) tan Z]8k

(3.3-5v)

Partial of the rotation angle M wrt the amplitude of the

periodic error:

8M
_a = sin (_t + _) (3.3-58)

3.3.3 V-SLIT SUN SENSOR MEASUREMENT MODEL AND PARTIAL

DERIVATIVES

The V-slit Sun sensor contains two slits of equal length,

one parallel to the spin axis, the other at an oblique

angle, as in Figure 3-5, from which is determined the time

At between Sun crossings. ADEAS uses as its preprocessed

measurement y* the rotation angle of the spacecraft between

Sun crossings given as _t where _ is the angular rotation

rate of the spacecraft. This measurement is a function of

the cosine of the Sun angle B between the Sun vector _I and

the spin vector.

The rotation angle is given by

-I -i
M = sin (cot 8 tan F.) - sin (cot 8 tan T) + A (3.3-59)

; .:T :'%.
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in the general case illustrated in Figure 3-5. ADEAS only

models the special case of T = 0, in which case the measure-

ment equation is

y* _ M = rotation angle = h(Cs) = sin -1 (cot 8 tan Z) + A

(3.3-60)

^I
where C s = projection of the unit Sun vector S onto the

spacecraft spin axis = cos 8

Z = tilt of the oblique slit

A = angle between the lines formed by the intersec-

tion of each slit with the x-y plane, the coor-

dinate frame being the spacecraft's principal

axes, with the spin vector parallel to the z-axis

This is the same as the V-slit star sensor model, Equa-

tion (3.3-47), with _ = _/2 and a = B.

If the two slits have the same lengths, _ is assumed in

ADEAS, the slit with the greatest tilt (Z) will define the

maximum and minimum 8 that.can be measured. Thus, the geo-

metrical limitation on the visibility of the V-slit Sun sen-

sor requires that the Sun angle 8 be between the minimum and

maximum values of

-i
8mi n = 90 deg - sin

-i
8max = 90 deg + sin

(sin (I/2) cos Z) deg

(sin (I/2) cos Z) deg

(3.3-61)

(3.3-62)

where _ is the length of the slits.

The measurement parameters, which the user may select as

either solved for or considered, for the V-slit Sun sensor

are

i. The measurement bias (deg)

2. The measurement scale factor

0450
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3. The amplitude of the measurement periodic error

(deg)

4. The angle A between the lines formed by the inter-

section of each slit with the x-y plane (deg)

5. The tilt of the oblique slit (deg)

6. The tilt of the vertical slit (deg)

Note that even though the tilt of the vertical slit is

always nominally 0 degrees, it may have a specified uncer-

tainty and hence be designated as an error parameter.

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

i. The frequency and phase angle of the periodic

measurement error

2. The angle A between the lines f_o'rmed by the inter-

section of each slit with the x-y plane (deg)

3. The tilt of the oblique slit (deg)

4. The length of the slits (deg)

When scheduling the V-slit Sun sensor, the analyst does not

have a choice of measurements to use, since there is only

one. Since the rotation angle has units of degrees, the

sensor white noise standard deviation has units of degrees.

Partial of the rotation angle M wrt the projection of the
• A

unit Sun vector S:

9M _ _an E (3.3-63)

8Cs sin 3 8 cos (M - A)
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Partial of the rotation angle M wrt the angle between lines

of slit intersection with the xy plane:

8M

_X = i (3.3-64)

Partial of the rotation angle M wrt the tilt of the tilted

slit:

8M cot
-- = (3.3-65)

8Z COS 2 Z COS (M - A)

Partial of the rotation angle M wrt the tilt of the vertical

slit:

8__M
8T = -cot 8 (3.3-66)

Partial of the rotation angle M wrt the bias b:

BM
_-_ = 1 (3.3-67)

Partial of the rotation angle M wrt the scale factor k:

BM
h(Cs) = A + sin -I (cot 8 tan Z)Bk

(3.3-68)

Partial of the rotation angle M wrt the amplitude of the

periodic error:

aM
8a

= sin (_t + _) (3.3-69)
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SECTION 4 - THREE-AXIS STABILIZED SPACECRAFT MODELS

As Section 2 discussed estimation filtering in a general

sense, this section provides specific attitude and sensor

models for three-axis stabilized spacecraft. These models

provide the basis for the construction of the state transi-

tion, measurement partial derivative, and random excitation

matrices used in Section 2.

4.1 ATTITUDE $ENERATIQN

For three-axis stabilized spacecraft, the attitude is defined

by the 3 x 3 orthogonal transformation matrix AB/R from some

reference coordinate system (see Section 5.1) to the space-

craft body coordinate system. The nominal spacecraft at-

titude A_/R evolves over time based on the body components

of the nominal spacecraft angular velocity _B/R relative to

the reference coordinate system (see Section 16.1 of Refer-

ence 3):

A_/R(t) = -_/R(t) A_/R(t) (4.1-1)

where _BIR is the 3 x 3 antisymmetric matrix defined from

_B/R by:

0_BIRz

B/Ry

"Airy]

0 -_/RxJ_BIRx

(4.1-2)

In addition, ADEAS models sinusoidal stabilization errors

about the nominal attitude:

;{- -?+-<,

0450

AB/R(t) = _e(t) A_/R(t)
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where

_e(t) -- I +

[_(t)] 2 -- e{t) --
i1 - COS le(t) l] - sin le(t)l

l (t)l2 l (t)l
(4.1-4)

m

and e is an antisymmetric matrix defined from a vector e

similar to Equation (4.1-2). The variation vector _ is

given by

e i = a i sin [_i (t - t o ) + yi ]
i = I, 2, 3 (4.1-5)

where the amplitudes a i, the frequencies _i'

7i are all constant. The attitude matrix

AB/I = AB/R AR/I

and the phases

(4.1-6)

is used for all sensor model computations, where the

inertial-to-reference matrices AR/I for different reference

frames are found in Section 5.1.

For ADEAS, the nominal attitude A_/R (t) is specified by an

initial attitude and a set of attitude rates. The initial

attitude A_/R (t o ) may be specified by Euler angles or a

quaternion (see Reference 3, Section 12.1 and Appendix E).

The angular velocity _B/R is specified between discrete times

t i in one of two ways. The first is as a set of constant

Euler angle rates, 6, e, _- The Euler angles for

ti_ 1S t < t i are given by

_(t) = _(ti_ I) + $i(t - ti_ I)

8(t) = 8(ti_ I) + 8i(t - ti_ I) (4.1-7)

_(t) = _(ti_ l) + _i(t - ti_ I)
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If the initial attitude is specified by Euler angles and _B/R

by Euler angle rates, the same Euler axis sequence is used

for both. If the initial attitude is specified by a

quaterion and _B/R by Euler angle rates, the initial Euler

angles _(t0), 8(t0), and _(t0) are computed from the initial

attitude matrix A_/R(t 0) using the equations in Table 4-1.

The correct quadrants for _ and _ are determined by the fact

that the signs of the numerator and denominator of the argu-

ment of tan -I are the signs of the sine and cosine, respec-

tively, of the angle. If both the numerator and denominator

of the expression for tan _ are zero, _ is set to zero.

The second means of specifying _B/R between the discrete times

t i is as a constant vector of components in the body frame.

When _/RIS constant, the solution to Equation (4.1-1) is

.

A_/R(t) = $A(t, ti_ I) AB/R (ti_ I)

where _B/R is constant for ti_ 1 5 t < t i and

(4 .I-8)

_A(t, ti_l) -I + [1 - cos

--I

i B/al
sin ]_/RI (t - ti_ I)

4.2 DYNAMIC ERROR MODEL

Let AB/R be the true spacecraft attitude and A_/R be an es-

timate of the attitude. For all internal processing, ADEAS

represents the error in A_/R by the first order error vec-

tor AS. The components of this vector represent the small

rotations needed about each of the spacecraft body axes to

0450
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Table 4-1. Computation of Euler Angles From Attitude

Matrix (i of 3)

EULER ANGLES

_ = tan -I [-A32/A331

-i
8 = sin __(A31)

[AI_ sin _ + A_ cos _]= tan-i LA23 sin _ + A22 cos

1-3 -2
_ = tan -I [A23/A22 ]

8 sin -I
= (-A21)

= tan- 1 [AI2 sin _ - AI3 cos _ ]

L-A32 sin _ + A33 cos _J

2-3-1
_ = tan -I [-AI3/AII ]

-i
8 = sin __(AI2)

sin _ + A2_ cos _ ]_ = tan- 1 [A_: sin _ + A33 cos 4_

2-1-3
_ = tan -I [A31/A33 ]

8 = sin -I (-A32)

cos ]
[A23 sin _ - A21 cos _J= tan-I L-A13 sin # + All

0450
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Table 4-i. Computation of Euler Angles From Attitude

Matrix (2 of 3)

EULER ANGLES

_ - tan -1 [-A21/A22 ]

8 = sin -I (A23)

A_2 sin # + A_I cos

= tan-i LAI2 Sin 4_ + All cos

3-2-1
_ = tan -I [AI2/AII 1

8 = sin -I (-AI3)

tan- 1 [A_I sin _ - A_2 cos _ l

L-A21 sin _ + A22 cos J

1-2-1
# = tan-i [A A ]12/- 13

-I

8 = COS (All)

[-A3_ sin _ - A32 cos _]= tan-i LA23 sin _ + A22 cos

1-3-1 tani[ 13"AI ]
-i

8 = COS ___(All)

_ = tan-i [-A22 sin _ + A2_ c°s _]
L-A32 sin d + A33 cos

0450
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Table 4-1. Computation of Euler Angles From Attitude

Matrix (3 of 3)

EULER ANGLES

_ = tan -I [A21/A23 ]

-i
8 = cos __(A22)

_ = tan-I "-A33 sin ¢ + A31 c°s 4P]
-A13 sin _ + All cos

2-3 -2 23/-A2

0 = cos -I (A22)

-All sin _ - AI3 cos @l
= tan-i LA31 sin _ + A33 cos _ J

3-1-3

-1
e = cos __(A33)

-I
= tan

A-A22 sin @ - A21 cos @l
12 sin _ + All cos @ J

3-2-3
-I

= tan

-i
e = COS

= tan -I

A 2/A311

(A33)

"-All sin _ + AI2 c°s :]
-A21 sin _ + A22 cos

0450
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align them with the estimated body axes (see Figure 4-1).

The true and estimated attitudes are then related by

A_/R _ (I + AS) AB/R (4.2-1)

where the antisymmetric matrix Ae is defined similarly to

Equation (4.1-2).

4.2.1 ATTITUDE ERROR PARAMETERIZATION

While the error vector A_ is useful for internal computa-

tions, ADEAS provides two additional attitude error param-

eterizations for convenience of input and output: Euler

angle errors and quaternion errors.

Euler angle errors represent the difference in the Euler

angles between the Euler sequence rotating the reference

coordinate system to the true spacecraft body system and the

Euler sequence rotating the reference system to the estimated

body system. The explicit forms for the attitude matrix in

terms of the 12 possible Euler sequences are given in

Table E-I of Reference 3. The relationship between the

attitude error vector and the Euler angle errors is analogous

to the relationship between the angular velocity vector and

the Euler angle rates. This analogy holds because the atti-

tude errors and the actual angular motion in an infinitesimal

time At are both infinitesimal. Therefore, the transforma-

tions between the components of the attitude error vector A_

and the Euler angle errors A_, AS, A_ can be obtained from

the well known relations relating Euler angle rates and the

angular velocity components. The following table of trans-

formations (Table 4-2) for 12 different Euler sequences is

adapted from Reference 3.

.i ¸¸
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Estimated Spacecraft Axes
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The three columns of the inverse transformation matrix rep-

resent the axes of ruler rotations expressed in the orthog-

onal body axes. It should be noted that the adjacent columns

are orthogonal. Similarly, the adjacent rows of the trans-

formation matrix are orthogonal. The Euler angles _, e, and

are derived from the attitude matrix AB/R by the transfor-

mations in Table 4-1.

The quaternion errors represent the difference in the qua-

ternion describing the rotation from the reference coordi-

nate system to the true spacecraft body system and the

quaternion describing the rotation from the reference system

to the estimated body system (Section 12.1 of Reference 3).

As in the case of Euler angle errors, the relationship to

the attitude error vector is analogous to the relationship

between the angular velocity and the quaternion rates.

Multiplying the dynamic equations of motion for quaternions

by At gives (see Section 16.1 of Reference 3)

Aq 1

Aq 2

Aq 3

!
2

-q4 -q3 q2-

q3 q4 -ql

-q2 ql q4

_ql -q2 -q3
m

Ael l

A82 I

A83J

(4.2-2)

where the quaternion q = (ql' q2' q3' q4 ) is derived from

the attitude matrix AB/R computed as in Section 4.1.

As stated previously, the error vector A8 is used for inter-

nal computations. Thus, the a priori covariance of the at-

titude error parameters is always given by

0450

PAattitude = E [AS(to)AST(to )]
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The assumption is made in ADEAS, however, that the initial

uncertainties in the parameters used for input and output

are uncorrelated. Thus, the form of the a priori covariance

of the attitude error parameters depends on which parameteri-

zation is used for input and output.

If the attitude error vector is used for input and output,

then

= _2 2 a2 >PAattitude diag 81, a82, 83
(4.2-3b)

If Euler angle errors are used for input and output, then

PAattitude = B [diag (a_, a_, u2)l_ B T
(4.2-3c)

where B is the appropriate matrix from the last column of

Table 4-2.

The situation is more complicated if quaternion errors are

used for input and output since the quaternion errors are

not independent but must obey the normalization condition

qT_q = 0 (4.2-3d)

Thus, we assume that the quaternion errors are given by

Aq = (I - q qT)6q (4.2-3e)

where the components of 6q are assumed to be independent so

that

0450

E[6q6q-T] = diag (a2 2 2 2 )ql' aq2' aq3' _q4
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With the Aq given by Equation (4.2-3e), Equation (4.2-3d)

is satisfied automatically. It would be inconsistent with

Equation (4.2-3d) to assume that E[AqAq T] had the form of

the right side of Equation (4.2-3f). Now we find from Equa-

tions (4.2-2), (4.2-3a), (4.2-3e), and (4.2-3f) that

PAattitude = 4B_
Oq2' _q3 ' q4 q

(4.2-3g)

if quaternion errors are used for input and output, where

B is the 4 x 3 matrix appearing in Equation (4.2-2).
q

4.2.2 ATTITUDE ERROR PROPAGATION

The true attitude AB/I relative to inertial space, given by

Equation (4.1-6), evolves according to

AB/I(t) = -_B/i(t) AB/I(t) (4.2-4)

where

_B/I = _B/R + _R/I (4.2-5)

is the angular velocity of the spacecraft relative to iner-

tial space, with _R/I being the angular velocity of the ref-

erence coordinate system.- All angular velocity components

in Equation (4.2-5) are in body coordinates. Similarly, the

estimated attitude

A_/I = A_/R AR/I
(4.2-6)

0450
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evolves according to

A_/I (t) = -_/I (t) A_/I(t) (4.2-7)

where _/I is the column vector of angular velocity compo-

nents in the body coordinate system derived using the gyro-

scope measurement model (see Section 4.3.1).

From Equation (4.2-1) and using Equations (4.1-6), (4.2-i),

and (4.2-4) through (4.2-7) we have

_!_ A8 = T _t_ AB/Idt /R AB/R = dt /I

T -T
= i /iAB/I÷ A /IAB/I

T T

= -_/I A_/I AB/I + A_/I AB/I _B/I

= -_/I &e + &ea_B/I - _/I + _B/I

(4.2-8)

Let

A_B/I = _/I - _B/I (4.2-9)

and assume that A_B/I is small. Then, to first order

_4_ ne = As + _e - A_
dt -_B/I B/I B/I

(4.2-i0a)

Or, in vector form

ne(t) = -_B/i(t)&8(t) - n_B/i(t)
(4.2-10b)

0450
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According to the gyroscope model of Section 4.3.1

A_BII(t ) = Ab(t) + _(t) Ak - _Bll(t) A_ - _eCt) (4.2-11)

where Ab is the gyro bias error (a first-order Markov proc-

ess), AT is the gyro scale factor error, AT is the gyro

alignment error vector, W e is a white noise process and

n(t) H diag [_S/i(t)] (4.2-12)

The attitude error A8 is nominally zero and thus can be in-

cluded with Ab, AT, and A_ in a composite state error vector

m--

A_

A_
B

(4.2-13)

Combining Equations (4.2-10), (4.2-11), and (4.3-22) then

gives the following state error equation:

ax(t) =

_B/I (t) -I -n(t) _B/I (t_

0 -I/T 0 0

0 0 0 0

0 0 0 0

ax(t)
ub(t)

0

-- 0 --

(4.2-14)

where

0450
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4.2.3 TRANSITION MATRIX COMPUTATION

Integrating Equation (4.2-14) then gives for the state tran-

sition matrix, as defined by Equation (2.1-5)

@(t, t') =

-@ee(t, t,)

0

O

_ O

@eb(t, t')

@bb(t, t')

O

O

@ek(t, t')

0

I

O

i - @ee(t, t')-

O

O

where

@ee(t, t.) ---_B/i(t) @ee(t, t.) (4.2-16)

@Sb(t, t') =-_B/i(t) @Sb(t, t °) - Ie -(t-t')/T(4.2-17)

@Sk(t, t') :-_B/i(t) @Sk(t, t') -n(t) (4.2-18)

@bb(t, t') = Ie -(t-t')/r (4.2-19)

This partitioning of the transition matrix is different from

the partitioning of Equation (2.2-id); the two partitionings

are related by row and column interchanges, depending on the

selection of dynamic solve-for and consider parameters.

Now Equation (4.2-16) has an identical form as Equa-

tion (4.2-4) for the attitude AB/I. Thus, @88 must also

act as a transition matrix for AB/I.

AB/I(t ) = @88(t, t') AB/I(t') (4.2-20)

0450
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or

T
#80(t, t') = AB/I(t) AB/I(t') (4.2-21)

V

Given a solution for _8(9' Equations (4.2-17) and (4.2-18)

can be integrated to give

t

Ceb(t, t') = -t/'  ee(t, t") e -(t'-t' )/T
dt" (4.2-22)

t

Cek(t, t') =-t/' ¢se(t, t') fl(t') dr"
(4.2-23)

Substituting Equation (4.2-21) into these gives

T e -(t"-t')/T dt
_(gb(t, t') = -AB/I(t) AB/I(t")

(4.2-24)

= -AB/I(t ) A_(t, t')

t

Cek(t, t') =-AB/I(t) AB/I(t") _(t')

= -AB/I(t) A_(t, t')

dr"

(4.2-25)

0450
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where

t

Ab(t, t') --t/' AB/I(t") e -(t'-t')/T

dt" (4.2-26)

t

Ak(t, t') - t/' n(t") AB/I(t")
dt" (4.2-27)

Over a small interval At such that I_B/II At << i, the tran-

sition matrix _88 can be approximated, to first order in

i B/ll At, by

_ee(t, t - At) _ I - _B/i(t) At
(4.2-28)

- .°

v

Assuming also that At/T << l, then, to first order:

e-At/T _ 1 - At/T (4.2-29)

Using Equations (4.2-28) and (4.2-29) in Equation (4.2-22)

gives
t

'gb(t' t - At) --- - t/,_-t [[ - _'/I(t)(t - t')](l - _" - t " 6t) dt"_

= - /a I - _ - •t + _t - _s/lltllt - t') dr"
t- t

(4.2-30)

Note that this result is still first order in I_B/II At and

At/T even though it is second order in At. Using Equa-

tions (4.2-28) and (4.2-29) again gives

_Sb(t, t - At) = -

0450
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Or, by Equation (4.2-21)

F T -AtlT
_Sb(t, t - At) = _ 12 At AB/I(t)[AB/I(t) e

+ AB/I (t - At

(4.2-32)

Then, from Equation (4.2-24)

v ]

Ab(t, t - At) = t At [AB/I(t) e -At/T + AB/I(t - At)J

(4.2-33)

Substituting Equation (4.2-28) into Equation (4.2-23), and

taking n to be approximately constant over the interval At,

gives

t

_ek(t, t - At) = - t/A- t [I - _B/i(t)(t - t")] nave(t) dt"

(4.2-34)

= -[IAt i t) At 2] (t)- 2 _B/I ( nave

where we have written nave(t) to emphasize that this is

really the average n over the time interval from t - At to t.

Using Equations (4.2-28) and (4.2-21) then gives

_ek(t, t - At) -- - ![I2 + #8e (t' t - At)] nave(t) At

T= - 2l AB/I(t) AB/I(t)

+ AB/I(t - At) nave(t ) At

(4.2-35)

0450
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Then, from Equation (4.2-25)

Ak(t, t - At) _ ½ nave(t) At[AB/I(t) + AB/I(t - At)] (4.2-36)

In many cases, it is necessary to propagate the covariance

over an interval t - t' that is large enough so that either

or both of Equations (4.2-28) and (4.2-29) would be violated

for At = t - t'. In this case, the full interval is broken

up into n equal steps of length:

At : (t - t')In (4.2-37)

where n = 1 + TRUNC{max[Jp(t, t')I, (t - t')/r]/6} (4.2-38)

6 is a user-specified tolerance, TRUNC is the truncation

function, i.e., TRUNC(x) is the largest integer less than or

equal to x, and p(t, t') is the net rotation of the space-

craft with respect to inertial space between times t' and t.

If gyro biases are neither solved-for nor considered, I/T

is set to zero, so that it does not affect the number of

steps. Equations (4.2-37) and (4.2-38) then guarantee that

max(J_avel'_t, _t/_) & 6 (4.2-39)

where the average angular velocity mare is related to

the total rotation by

p(t, t') = _ave(t - t') (4.2-40)
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The vector p(t, t') is computed by using Equation (4.2-40)

and the analogs of Equations (4.1-7) and (4.1-8) for rota-

tions with respect to inertial space, which give

T till2AB/I(t) AB/I(t') = I + [7(t t ) 2[ 1 _ cos Ip(t, t') I]

(4.2-41)

_ __(t. t') sin Ip(t, t')l

lp(t, t')l

The trace of this equation gives

{_(t,t'){ = COS -I tr B/I(t) AB/I (t') - 2 "

Note that Ip(t,t')l represents the rotation through the

smallest angle connecting the initial and final attitudes,

rather than the actual rotation performed in a maneuver.

For a complex maneuver, it may be that lWavel At <<

lWlave At > 6.

The computations used in ADEAS will be accurate if either a

measurement or an output is processed between different arcs

of a complex maneuver.

The matrix n (t) At, which is needed in Equation (4.2-36),
ave

is given, using Equation (4.2-12), by

nave(t) At = diag[wB/i(t) At] (4.2-43)

where _B/i(t) means the average angular velocity from t - At

to t.
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The nonzero elements of _ (t)At are numerically equal to
ave

three of the elements of the antisymmetric matrix _B/I(t)At,

which can be computed from AB/I(t) and AB/I(t - At) by taking

half of the antisymmetric part of Equation (4.2-41) with

t' = t - At:

T At_
12 _n/I (t - At)A_/I(t) - As/I(t) AB/I(t -

_(t.t - At)

= J_(t,t - At)_ sin Ip(t,t - At){ (4.2-44)

= _(t,t - at) = _B/iCt)At

The approximation is valid if Ip(t,t - At) I is small

enough so that Ip(t,t - At) I = sin Ip(t,t - At) I ,

which is guaranteed by the choice of 6 to be at least as good

as other approximations made in the dynamic analysis.

Now the integrals for A b and A k in Equations (4.2-26) and

(4.2-27) can be approximated by the sum of the corresponding

values over each of the intervals At, as given by Equa-

tions (4.2-33) and (4.2-36). Thus, letting t. = t' + iAt:
1

n-I

Ab(t, t') = _ e -iAt/_

i=0

AbCti+ I, t i)

n-i

=2! At _ e-iAt/r [A -At/rB/I(ti+l) e

i=0

= At l_ IAB/I (t') + AB/I(t)e-nAt/_I.

n-1 /
+ '_ AB/i(ti)e -iAt/r

i=l

+ AB/I (ti) 1

(4.2-45)

• ";_
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n-l

Ak(t, t') = _

i=0

Ak(ti+ I, t i)

n-i

_ _lave (ti+ I)

i--0

(4.2-46)

At[AB/i(ti+ I) + AB/i(ti)]

The transition matrices _Sb(t, t') and _Sk(t, t')

can then be computed using Equations (4.2-24) and (4.2-25).

Since the submatrix _88(t, t') is seen from Equa-

tion (4.2-21) to be orthogonal, the inverse of the full

state transition matrix is given by

l'_(t, z')

+'x¢t. t') - o 1

w

0 |,

where

o t ,
o i o

.

z - #_(t. t')

O (4.2-47)

#b_(t, t') = le (t-t')/l: (4.2-4s)
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4.2.4 RANDOMEXCITATION COVARIANCEMATRIX COMPUTATION

Defining _ as in Equation (2.1-6), then, based on Equa-

tions (4.2-14) and (4.2-15), the random excitation matrix is

d(t, t °) = E[_(t, t') (t, t')]

t

=/ (h(t, t °') Qu (hT(t' t")

at"

-dee(t, t,)

d_b(t, t')

0

0

deb(t, t') _ 0 I 0-
.......-...._....

! I

dbb(t, t') I 0 I 0
..............+ ...._....

o I olo
............... I----+ ....

0 ' 0 I 0I

(4.2-49)

./

where

t

dee(t, t'):/ [%e(t, t-)% (h_o(t, t")

+ (hOb(t, t")Qb (h_b (t' t")] dt"

(4.2-50)

t

deb(t, t') = t/' (heb (t' t") Qb @bb (t'

t") dt" (4.2-51)

dbb(t, t') =/ (hbb(t, t") Qb @bb (t' t") dt"

(4.2-52)
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with

(4.2-53)

E[Ub(t) u_(t')] : Qb 6(t - t') (4.2-54)

Note that this partitioning of d is different from the par-

titioning of Equation (2.2-13). The two partitionings are

related by row and column interchanges, depending on the

selection of dynamic solve-for and consider parameters.

Substituting Equations (4.2-19), (4.2-21), and (4.2-24) into

Equations (4.2-50), (4.2-51), and (4.2-52) gives

T

d88(t, t' ) = AB/I(t) d_e(t, t' ) AB/I(t)

dsb(t, t') : -AB/I(t) d_b(t, t')

(4.2-55)

(4.2-56)

i T[I - e -2(t-t')/T] Qb' if
dbb(t, t') = (4.2-57)

Qb(t - t') , if I/T = 0

i/'t _ 0

where

t

f["d_e(t, t') _= AB/I(t') Q8 AB/I(t')

, ]+ Ab(t, t') Qb Ab(t' t') dt"

(4.2-58)
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v

t

d6b(t, t') -- t/' A_(t, t") e -(t-t')/T Qb dt" (4.2-59)

Over a small interval At, with ]_BIIi__ At << 1 and AtlT << I,

we can use the first order approximations of Equa-

tions (4.2-28) and (4.2-30) in Equation (4.2-50) to obtain

d88(t, t - At) _ Q8 + [Q@ _B/I (t) - _B/I (t) Q8 ](t - t')

At

+ Qb(t - t,) 2 + 21[Qb _B/I (t)

- _B/i(t) Qb ](t - t')3

_ ir Qb (t - t')31 dt'

= Qe at + 2[Qo _B/I (t) - _B/I (t) QO ] At2

1 1 _ ~
+ 3 Qb At3 + 8[QB _B/I (t) - _B/I (t) QB ] At4

_ Qb At44_

=X2 At[Qe . %e(t, t - at) Qe _e (t' t - At)

(4.2-60)
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Substituting Equations (4.2-21) and (4.2-24) into this gives

dee(t, t -
T

&t) _ 21 At AB/I(t) [AB/I(t) Qe AB/I(t)

T
+ AB/I(t - Bt) Qe AB/I(t - At)

+6x TAB/I(t) Qb AB/I(t)(At)2

+ 21A T ] Tb(t, t - Bt) Qb Ab(t' t - At) AB/I(t )

(4.2-61)

Then, from Equation (4.2-55)

A Td_e(t, t - At) _ I At B/I (t) Qe AB/I(t)

T

+ AB/I(t - At) Qe AB/I(t - At)

AB/I(t) Qb AB/I(t)(&t)2

+ 21 A_(t, t- At)Qb Ab(t' t- At)]

(4.2-62)
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Using the approximations of Equations (4.2-29) and (4.2-30)

in Equation (4.2-51) gives

/-o?

dsb(t, t -

t

t

".
t

+ _B/I(t)] (t - t')21 Qb dt'

= - _ I At 2 + _ I + _B/I(t) At 3 Qb

1 At 21 I At (t, t - At) e Qb- 3 - Ceb

(4.2-63)

Substituting Equation (4.2-24) into this gives

i At (t)[½ Tdsb(t, t - At) _ - 3 AB/I AB/I(t) At

+ A T ]b(t, t - At) e -At/r Qb

(4.2-64)

Then, from Equation (4.2-56),

! At I_ Td_b(t, t - At) = 3 AB/I(t) At

+ A_(t, t - At) e -At/r Qb

(4.2-65)
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We divide the time interval from t' to t into n subintervals

of length At = (t - t')/n as before. Then, from Equa-

tions (2.1-8) and (2.2-13), with t i = t' + iAt

d(ti+ I, t') = _(ti+ I, t i) d(t i, t') _T(ti+ I, ti) + d(ti+ I, ti)

(4.2-66)

or, using the partitioning of Equations (4.2-15) and (4.2-49)

d88(ti+ l, t') = @88(ti+I, ti) d88(t i, t') _8(ti+l, ti)

+ _88(ti+i, t i) dsb(t i, t') _b(ti+l, ti)

+ _Sb(ti+l, t i) d_b(t i, t') _8(ti+l, ti)

+ _Sb(ti+l, t i) dbb(t i, t') _b(t

+ d88(ti+ l, t i)

i+l" ti)

(4.2-67)

dsb(ti+ 1 , t') = Cee(ti+l, ti) deb(t i, t') Cbb(ti+l, ti)

+ _Sb(ti+l, t i) dbb(t i,

+ dsb(ti+ I, t i)

t') #bb(ti+l, t i )

(4.2-68)
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Substituting Equations (4.2-19), (4.2-21), (4.2-24),

(4.2-55), and (4.2-56) into these gives

d_8(ti+ I, t')= d_0(t i, t') + d_b(t i, t') Ab(ti+ I, t i)

, d 'T+ A (ti+ 1 t i) 8b(ti, t')
(4.2-69)

T , ti) (t t °) Ab( t i)+ Ab(ti+l dbb i' ti+l'

+ d_e(ti+ I, t i)

-Atl_
d_b(ti+ I, t') = d_b(t i, t') + A_(ti+ I, t i) dbb(t i, t') e

(4.2-70)

+ d_b(ti+ I, t i)

The matrices d_8(t, t') and d_b(t, t') can be computed by re-

cursively applying Equations (4.2-69) and (4.2-70), starting

from zero and using Equations (4.2-33), (4.2-57), (4.2-62),

and (4.2-65) at each step. The matrices d00(t, t') and

dsb(t, t') can then be computed using Equations (4.2-55)

and (4.2-56).

4.3 SENSOR MODELS

The three-axis sensor modeled by ADEAS are

Gyroscopes

IR horizon sensor

Three-axis magnetometer

Fixed-head star tracker

Gimbaled star tracker

Digital Sun sensor

Analog Sun sensor

Gimbaled Sun sensor
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For the three-axis stabilized spacecraft, ADEAS models the

measurement function h(x, p') of Equation (2.1-13) in the

following way:

m

h(x, p') = h(R S p') (4.3-1)

where _S = unit vector, expressed in sensor coordinates,

representing the known direction of an externally

sensed object

h = sensor-specific function of the unit vector _S

The functional dependence of the measurement on the space-

craft attitude and sensor alignment is through the unit ref-

erence vector _S. Let Ae be the vector of small rotation

angles representing the spacecraft attitude errors, and let

be the vector of small rotation angles representing the

sensor alignment errors. The following equations assume

that Ae and _ are expressed in radians. Ae is always a sub-

set of the solved-for vector, whereas the analyst may des-

ignate any component(s) of # to be either solved for,

considered, or ignored. The partial derivatives of the

measurements with respect to Ae and _ are given as

(4.3-2)

(4.3-3)

8h/dR S is sensor and model dependent and is described for

each of the three-axis sensors in the subsequent sections;

8RS/sAe and 8RS/_ are derived below.
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The unit reference vector in sensor coordinates can be ex-

pressed as

_S = [As/B][AB/I] _I = [As/B] _B (4.3-4)

A

where RS = the unit reference vector expressed in sensor
coordinates

[As/B ] = the body-to-sensor rotation matrix

[AB/I] = the inertial-to-body rotation matrix

_I = the unit reference vector expressed in GCI

coordinates

_B = the unit reference vector expressed in body

frame coordinates

The sensor alignment errors _ are errors in [As/B], and the

spacecraft attitude errors 48 are errors in lAB/I]. Thus,

T_

0450

4-31



considering only small errors in the attitude and sensor

alignments, the error in _S can be expressed as

v

a_s_-

0 _z -_Yi

-_z 0 _x [As/B] lAB/I] _I

_y --_x 0

_0 Ae z+ [As/B ] Ae z o

Aey -Ae x
AeX]o [AB/I] _I

o _z -_Yi

-_z o _x

_y -_x o

0 -R S R S
z y

R S 0 -R S
Z X

-R S R S 0
y x

,t°Aez

_S+ [As/B] L Aey

_y + [As/B ]

_z
m

m

0

RB
Z

_R B
Y

D

Ae
Z

0

-Ae
X

_R B
Z

0

RB
X

(4.3-5)

-Aey ]

j0 x

m m

R B Ae
y x

-RBx {ASy

o _ {asz

The necessary partials are then

- 0. -R B RB
z y

RB 0 -R B
Z X

-R B R B 0
y x _

ats

n

0

= RS
Z

_R S
_ Y

_R S R S-
z y

0 -R S
X

R S 0
X

m

(4.3-6)
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The partial derivatives 8h/SR s in Equations (4.3-2) and

(4.3-3) are evaluated assuming that the components of _S can

be independently varied. This is not strictly true because

of the unit vector constraint IRSI = l; this constraint also

allows us alternate ways of expressing functions of _S, for

instance

I

^S
Any resulting ambiguity in the partial derivatives 8h/SR is

eliminated upon multiplication by 8RS/8_ or 8RS/8_, so the

partial derivatives 8y/SA8 and 8y/8_ are unambiguous. The

evaluation of 8RS/sAe is always performed because the atti-

tude error vector is always a subset of the solved-for vec-

tor, whereas 8RS/8_ is computed only when one or more of the

sensor alignment angles have been designated as solved for

or considered. The formulation of h and its partial deriva-

tives with respect to _S is thus a key to the sensor-related

error analysis computations. The expressions for h(_ s -',P)

and a complete list of all partial derivatives for each

sensor are given below.

For all sensors the sensor boresight is along the Z-axis of

the sensor coordinate frame.

4.3.1 GYROSCOPES

Gyroscopes are modeled very differently from other sensors

in ADEAS since gyroscope errors are regarded as part of the

dynamic error model, as discussed in Section 4.2, rather

than as measurement errors. Another major difference is

that gyroscope data are assumed to be continuously available

for attitude propagation, rather than being scheduled like

other measurements. These differences can be summarized by

saying that gyroscope data are used in a "model replacement"
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mode since they replace a full dynamic model of the space-

craft motion incorporating environmental and control torques.

Thus, in distinction to other sensor models, no measurement

function h(x, p') will be derived for gyros. Rather, this

section will provide a derivation of Equations (4.2-11)

through (4.2-14).

The raw gyro measurement _S is assumed to be related to

the spacecraft angular velocity _B/I by

%

J

_S = M(_B/I - _ - uo) (4.3-7)

where M is a matrix incorporating gyroscope alignments and

scale factors, b is a vector of gyro biases, and _8(t) is a

white noise process. These quantities are not perfectly

known, so the attitude determination is based on these meas-

urements using a model

_S = M"(_/I - _*) (4.3-8)

where M* and b* contain estimates of the alignments, scale

factors, and biases. Thus, the estimate of the spacecraft

angular velocity is

_/I = M*-I M[_B/I - _ - us] + _* (4.3-9)

The matrix M *-I M can be written as the sum of a symmetric

and an antisymmetric matrix.

M *-I M = K + A_ (4.3-10)

0450

4-34



v

where K is symmetric and _ is skew-symmetric. It is assumed

that M* is a good estimate of M; so K is close to the iden-

tity matrix, and _ is small. If K = I, the matrix I + _

represents a small rotation given by a rotation vector AE,

the vector of gyro alignment errors. In the general case,

we assume that _ has this interpretation and that

K = I + diag[_k] = I + diag[Ak x, _ky, _k z] (4.3-11)

where _k is a vector of gyro scale factor errors. Nonzero

off-diagonal elements of K would represent either higher-

order effects in A_, which are negligible, or shear-type

misalignments of the gyro input axes (as opposed to the rigid

misalignment of all input axes represented by A_), which we

assume not to be present.

Inserting Equations (4.3-10) and (4.3-11) into Equa-

tion (4.5.9), and neglecting terms of order _b T Ak_; I

_5, and A_5 8 gives

_/I = {I + diag[Ak] + A_} _B/I + _* - _ - u8

With Equation (4.2-9) written as

(4.3-12)

_mB/I -- °_/I - mB/I (4.3-13)

and with

_b- b* - b (4.3-14)
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and
.,-%

"v

n _--diag[_B/I] (4.3-15)

this can be written

A_B/I = Ab" + ,,q Ak - _B/I &_ - u8 (4.3-16)

which is identical to Equation (4.2-11).

The remaining task is to specify the time dependence of the

gyro biases, scale factors, and misalignments. The scale

factor vector Ak and the misalignment vector A_ are assumed

to be constant, as reflected in Equation (4.2-14). The bias,

however, is assumed to obey the differential equation

b = -_/_ - _b (4.3-17)

where T is a correlation time and ub(t ) is another white

noise process. The processes us(t) and ub(t) are assumed

to be independentso that

E[ue(t) u_(t' )] = Qe 6(t- t') (4.3-18)

E[Ub(t) u_(t')] = Qb 6(t - t') (4.3-19)

E[ue(t) u_(t')] = 0 (4.3-20)
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Equations (4.3-18) and (4.3-19) are identical to Equa-

tions (4.2-53) and (4.2-54). The bias estimate obeys

b* = -b*/T (4.3-21)

with the same correlation time as b.

equation

m

Thus, Ab obeys the

m

Ab = -Ab/T + U b (4.3-22)

which is used in Equation (4.2-14).

4.3.2 IR HORIZON SENSOR MEASUREMENT MODEL AND PARTIAL

DERIVATIVES

The measurement model for the IR horizon sensor is shown in

Figures 4-2 and 4-3, where the reference unit vector _S is

the Earth vector expressed in sensor coordinates. The out-

puts of the IR horizon sensor are the Earth-in azimuth,

Earth-out azimuth, Earth width, and Earth azimuth. Each

azimuth is measured with respect to a user-defined, fixed-

reference azimuth expressed in degrees from the X-axis of

the sensor frame. The Earth vector in sensor coordinates is

given by

= = (4.3-23)

_w

E S
Y

E s
z

_sin n cos (_ E + _0 )]

in n sincos(_En + _0)]

where cos n = _S • _S = E S and
z

sin _ =_i - cos 2 _ _ 0 since 0 _ _ S 180 °.
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Figure 4-2. Coordinate Geometry for Earth IR Horizon Sensor
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Figure 4-3. Spherical Geometry for Earth IR Horizon Sensor
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Thus the measurements are calculated as

y* = Earth width = h(E S)

-i Icos o - cos n co_ 7 I
2 cos ( sin n sin )

y* = Earth azimuth = h(E S) _ _E

(4.3-24)

(4.3-25)

y* = Earth-in = h(ES)- -̂ _ AIN = _E -
I n
2

(4.3-26)

y* = Earth-out = h(E S) - AOU T = _E + ½ n (4.3-27)

where E x, Ey, E z = x, y, and z components of Earth vector ex-
pressed in the sensor frame, the super-

script S being understood

_0 = reference azimuth from X-axis of

sensor frame (deg)

p = Earth angular radius

= sin -I [(r + ht)/R]

r = Earth radius (km)

h t = IR tangent height (km)

R = magnitude of the spacecraft position

vector (km)

T = sensor scan cone angle (deg)

q = angle between sensor boresight and Earth

vector (deg)

The measurement model, in Equations (4.3-24) through

(4.3-27), describes a conventional wheel-mounted horizon

sensor. A very similar model describes the panoramic at-

titude sensor (PAS) in the planar mode. Its unit reference
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vector is also the Earth vector expressed in sensor

coordinates. The differences are as follows:

i. The sensor scan cone angle is 90 degrees•

2. Only the Earth-in and Earth-out signals are sensed.

3. The Earth-in and Earth-out azimuths are measured

with respect to the X-axis of the sensor frame,

i.e., the reference azimuth is 0 degrees.

4. The sensor does not rotate continuously in one

direction as does the sensor indexed scanner, but

instead scans back and forth across a user-defined

arc at a user-defined rate.-

The direction of the scan is important for the computation

of the measurements and their partial derivatives. When the

sensor is scanning in the clockwise direction, the measure-

ments are computed as

y* = Earth-in =

y* = Earth-out =

^S 2!h(E ) -_-AIN = D E + (4.3-28)

_ 1 n (4 3-29)h(ES) -- AOUT = DE 2

When the scanner is scanning counterclockwise, Equa-

tions (4.3-25) and (4.3-26) are used for the Earth-in and

Earth-out measurements, respectively.

The measurement parameters that the user may select as either

solved for or considered for the IR horizon sensor are

i •

2.

3.

4.

5.

The x sensor misalignment angle (deg)

The y sensor misalignment angle (deg)

The z sensor misalignment angle (deg)

The Earth-in bias (deg)

The Earth-in scale factor
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6. The amplitude of the Earth-in periodic measurement

error (deg)

7. The Earth-out bias (deg)

8. The Earth-out scale factor

9. The amplitude of the Earth-out periodic measurement

error (deg)

I0. The Earth width bias (deg)

ii. The Earth width scale factor

12. The amplitude of the Earth width periodic measure-

ment error (deg)

13. The Earth azimuth bias (deg)

14. The Earth azimuth scale factor

15. The amplitude of the Earth azimuth periodic meas-

urement error (deg)

16. The sensor scan cone angle (deg)

17. The fixed reference azimuth (deg)

18. The IR tangent height (km)

19. The distance from the spacecraft to Earth center

(ks)

20. The Earth angular radius (deg)

Note that even though the scan cone angle is always nomi-

nally 90 degrees and the reference azimuth is always nom-

inally 0 degrees for the PAS in the planar mode, both can

have a specified uncertainty about their nominal values and

hence can be designated as error parameters.

÷
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In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

i. The Euler rotation sequence and Euler angles defin-

ing the orientation of the sensor frame relative to

the spacecraft body frame

2. The frequency and phase angle of the Earth-in

periodic measurement error

3. The frequency and phase angle of the Earth-out

periodic measurement error

4. The frequency and phase angle of the Earth width

periodic measurement error

5. The frequency and phase angle of the Earth azimuth

periodic measurement error

6. The reference azimuth measured from the x-axis of

the sensor frame (deg)

7. The sensor scan cone angle (deg)

8. The IR tangent height (km)

9. The initial scan arc angle (deg)

i0. The time rate of change of the scan arc angle

(deg/sec)

ii. The minimum scan arc angle (deg)

12. The mamimum scan arc angle (deg)

Note that some of these parameters are not used for the PAS,

and some are only used for the PAS.

When scheduling the IR horizon sensor, the user may use one

or two of the sensor outputs for the error analysis compu-

tations. Since all outputs have units of degrees, the user-

supplied value of the sensor white noise standard deviation

for each measurement has Units of degrees.
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The errors in the Earth-in and Earth-out measurements are

assumed to have equal standard deviations uA and to be un-

correlated with one another. Then, it follows from Equa-

tions (4.3-26) through (4.3-29) that the errors in the

Earth-width and Earth-azimuth measurements are uncorrelated

and that their standard deviations are

b_

(4.3-30)

U_ = _ ¢A (4.3-31)

The correlations between the pairs (_, AIN), (Q, AOUT),

(_E' AIN)' and (_E' AOUT) are ignored if any such pair is

selected.

Partial of the Earth azimuth wrt the unit Earth vector E:

8_E -Ey

8E x E2 + E2
x y

(4.3-32)

8_E Ex

BEy E2 + E2
x y

(4.3-33)

8E
Z

= 0 (4.3-34)

Partial of the Earth azimuth wrt the sensor scan cone angle:

0 (4.3-35)
87 =
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Partial of the Earth azimuth wrt the Earth angular radius:

8_E = 0 (4.3-36)
8p

Partial of the Earth azimuth wrt the IR tangent height:

@h t
= 0 (4.3-37)

Partial of the Earth azimuth wrt the spacecraft distance

_rom Earth:

8_ E

B-R'- = 0 (4.3-38)

Partial of the Earth azimuth wrt the bias b:

8(I'E
-- = 1 (4 3-39)
8b

Partial of the Earth azimuth wrt the scale factor k:

8_E_Sk_ h(E)= tan-1 (EYII -_0Ex
(4.3-40)

Partial of the Earth azimuth wrt the amplitude of the peri-

odic error a:

8_ E
- sin (wt + _) (4.3-41)

8a

:_ _ "I

0450

4-45



A

Partial of the Earth width wrt the unit Earth vector E:

8Q = 0 (4.3-42)
8E x

_9___ = 0 (4.3-43)

BEy

cos _ - sin _ cos _ cot n 1
= 8Q = 2 (4.3-44)

8(cos q)
8Ez sin 7 sin q sin

2

Partial of the Earth width wrt the sensor scan cone angle:

Icos 7 sin q cos _- sin 7 cos n |

-]f_

_-_ 2 -- ] (4 3-45)87 = sin 7 sin n sin Q "
2

Partial of the Earth width wrt the Earth angular radius:

°2[8P = sin 7 sin q sin

(4.3-46)

Partial of the Earth width wrt the IR tangent height:

8h t ap R cos p
(4.3-47)

Partial of the Earth width wrt the spacecraft distance from

Earth:

0450
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k .

/,i

V Partial of the Earth width wrt the bias b:

(4.3-49)

Partial of the Earth width wrt the scale factor k:

8k _ h(E) = 2 cos
¢0s 0 - COS 7 cos

sin 7 sin n
(4.3-50)

Partial of the Earth width wrt the amplitude of the periodic

error a:

_n
8a = sin (_t + ./) (4.3-51)

In the following partial derivatives with a ± sign, the

upper sign is to be used for the conventional IR scanner and

for the PAS scanning in the counterclockwise direction,

while the lower sign is used for the PAS scanning in the

clockwise direction in accordance with Equations (4.3-28)

and (4.3-29).

Partial of the Earth-in angle wrt the unit Earth vector E:

8AIN 8_ E

8E 8E
x x

(4.3-52)

8AIN 8_ E

BEy - BEy
(4.3-53)

8AIN

8E
z

(4.3-54)
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Partial of the Earth-in angle wrt the sensor scan cone angle:

By = +- -

Partial of the Earth-in angle wrt the Earth angular radius:

8AIN
(4.3-56)

Partial of the Earth-in angle wrt the IR tangent height:

8h t = + - Bh t
(4.3-57)

Partial of the Earth-in angle wrt the spacecraft distance

from Earth:

AIN_

-- 2 8R

Partial of the Earth-in angle wrt the bias b:

(4.3-58)

BAIN 1 (4.3-59)
Bb =

Partial of the Earth-in angle wrt the scale factor k:

8k = h(E) = _E + f2 (4.3-60)

Partial of the Earth-in angle wrt the amplitude of the

periodic error a:

0450

= sin (_t + _)
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v

A

Partial of the Earth-out angle wrt the unit Earth vector E:

(4.3-62)

8Aou T 8_ E

%Ey = BEy

8E z = _+ 8Ez)

(4.3-63)

(4.3-64)

Partial of the Earth-out angle wrt the sensor scan cone

angle:

8y = +
(4.3-65)

Partial of the Earth-out angle wrt the Earth angular radius:

AouT
(4.3-66)

Partial of the Earth-out angle wrt the IR tangent height:

8h t = + 8h t
(4.3-67)

Partial of the Earth-out angle wrt the spacecraft distance

from Earth:

0450
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Partial of the Earth-out angle wrt the bias b:

AouT 1
Bb (4.3-69)

Partial of the Earth-out angle wrt the scale factor k:

Bk = h(E) = _E -+ (4.3-70)

Partial of the Earth-out angle wrt the amplitude of the

periodic error a:

8AouT sin (_t + _) (4 3-71)
Ba =

4.3.3 THREE-AXIS MAGNETOMETER MEASUREMENT MODEL AND PARTIAL
DERIVATIVES

The three-axis magnetometer computes the three independent

components of the Earth's magnetic field at any time and

position, using the geomagnetic reference field updated to

epoch 1985.0. The measurement is the magnetic field vec-
A

tor M, which can be written M = MU, where M is the magnitude
A

of the magnetic field, and U is a unit vector in the direc-

tion of the field. The external reference vector is the

unit vector U:

y* = x Component = h(U) = M S = MU S
X X

(4.3-72)

A

y* = y component = h(U) = M S : MU s (4.3-73)
Y Y

0450
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i,

The measurement parameters, which the user may select as

either solved for or considered, for the three-axis magnetom-

eter are

i. The x sensor misalignment angle (deg)

2. The y sensor misalignment angle (deg)

3. The z sensor misalignment angle (deg)

4. The x component bias (Teslas)

5. The x component scale factor

6. The amplitude of the x component periodic measure-

ment error (Teslas)

7. The y component bias (Teslas)

8. The y component scale factor

9. The amplitude of the y component periodic measure-

ment error (Teslas)

i0. The z component bias (Teslas)

ii. The z component scale factor

12. The amplitude of the z component periodic measure-

ment error (Teslas)

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

i. The Euler rotation sequence and Euler angles defin-

ing the orientation of the sensor frame relative to

the spacecraft body frame

2. The frequency and phase angle of the x-component

periodic measurement error

3. The frequency and phase angle of the y-component

periodic measurement error
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4. The frequency and phase angle of the z-component

periodic measurement error

When scheduling the three-axis magnetometer, the analyst may

use any or all of the sensor outputs for the error analysis

computations. Since all three outputs are components of a

magnetic field vector, the sensor white noise standard

deviation for each measurement has units of Teslas.

Partial of the x component wrt the unit magnetic field vec-
A

tor U:

8M

8U
X

-- M (4.3-75)

8M

BUy

8M
J
aU

Z

= 0 (4.3-76)

= 0 (4.3-77)

Partial of the x component wrt the bias b:

8M
J
8b

-- 1 (4.3-78)

Partial of the x component wrt the scale factor k:

_M
A

8k x (4.3-79)
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Partial of the x component wrt the amplitude of the periodic

error a:

8M x
- sin (mt + _) (4.3-80)

8a

Partial of the y component wrt the unit magnetic field vec-

tor U:

o.-

8M
---X= 0
8U

X

8M
----Y = M

8Uy

8M
----Z= 0
8U z

Partial of the y component wrt the bias b:

(4.3-81)

(4.3-82)

(4.3-83)

8M
__X = 1 (4.3-84)
8b

Partial of the y component wrt the scale factor k:

8M A
----_ _ h(U) = M (4.3-85)
8k Y

Partial of the y component wrt the amplitude of the periodic

error a:

8M sin (_t + _) (4.3-86)
8a =
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Partial of the z component wrt the unit magnetic field vec-

tor 0:

8M
J
8U

X

= 0 (4.3-8v)

8M
Z

%uy 0
(4.3-88)

8M

8U
Z

= M (4.3-89)

Partial of the z component wrt the bias b:

8M

1 (4 3-90)8b --

Partial of the z component wrt the scale factor k:

©

8M
Z A

8--_ = h(U) = Mz (4.3-91)

Partial of the z component wrt the amplitude of the periodic

error a :

8M

z = sin (_t + _) (4.3-92)8a

4.3.4 FIXED-HEAD STAR TRACKER MEASUREMENT MODEL AND PARTIAL
DERIVATIVES

The fixed-head star tracker projects the x and y coordinates

of the reference unit star vector _S onto the U-V plane, as
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v shown in Figure 4-4.

lows :

The measurements are computed as fol-

)y,, -- u -- h(_ s) -- - x/" z

/ I

(4.3-93)

(4.3-94)

ADEAS allows the fixed-head star tracker to have either a

conical or pyramidal field of view. The star is visible to

the conical sensor only if the angle between the boresight

and _ is less than the user-specified conical half angle.

Similarly, the star is visible to the pyramidal star tracker

only if

Pyramidal x half angle >] tan-l (Ss/SS)\x/ z

and

Pyramidal y half angle > tan -I k Y/ z

The measurement parameters, which the user may select as

either solved for or considered, for the fixed-head star

tracker are

•

2.

3.

4.

5.

6.

The x sensor misalignment angle (deg)

The y sensor misalignment angle (deg)

The z sensor misalignment angle (deg)

The U bias

The U scale factor

The amplitude of the U periodic measurement error
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4-55



Z

X

Y

U

Figure 4-4. Fixed-Head Star Tracker Geometry
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7. The V bias

8. The V scale factor

9. The amplitude of the V periodic measurement error

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

I. The Euler rotation sequence and Euler angles defin-

ing the orientation of the sensor frame relative to

the spacecraft body frame

2. The frequency and phase angle of the U periodic

measurement error

3. The frequency and phase angle of the V periodic

measurement error

4. The designation of the sensor field of view as

either conical or pyramidal

5. The conical half angle or the pyramidal x and y

half angles

When scheduling the fixed-head star tracker, the analyst may

use either or both of the sensor outputs for the error anal-

ysis computations. Since both outputs are dimensionless

projections of a unit vector, the sensor white noise

standard deviation has units of radians.

A

Partial of the U component wrt the unit star vector S:

8__U_._ I_._ (4 3-95)
_c = - S

X Z
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(4.3-96)

8S z S 2
Z

(4.3-97)

Partial of the U component wrt the bias b:

8U 1 (4 3-98)8b =

Partial of the U component wrt the scale factor k:

9// _ ^ = -S (4 3-99)
Bk h(S) S

Z

Partial of the U component wrt the amplitude of the periodic

error a:
@

9// sin (_t + _) (4 3-100)
aa =

Partial of the V component wrt the unit star vector S:

vg_v_
BS

X

= 0 (4.3-101)

vL_ 1__
m

8S S
y z

(4.3-102)

av s
8S =

z S2
Z

(4.3-103)
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Partial of the V component wrt the bias b:

8v 1
8b =

(4.3-104)

Partial of the V component wrt the scale factor k:

-S

h(S) ___Z
8k _ = S

Z

(4.3-i05)

Partial of the V component wrt the amplitude of the periodic

error a:

8V
sin (_t + _) (4.3-106)8a =

4.3.5 GIMBALED STAR TRACKER MEASUREMENT MODEL AND PARTIAL

DERIVATIVES

The gimbaled star tracker uses azimuth (_) and elevation (8)

gimbals to point a focal plane at a star. Thus, if the Star

unit vector is _S in the sensor frame, it is _FP in the focal

plane frame, where (see Figure 4-5)

_FP = line0cose]Icoi0sin°0 1 0 si % cos

cos 8 0 sin 8 0

sin 8 (cos _ Sx + sin # Sy) - cos 8 S z= .cos _ Sy - sin _ Sx

Lcos 8 (cos _ Sx + sin # Sy) + sin 8 Sz

o

i

(4.3-107)

]
The superscript S has been omitted on the right side for

convenience. A superscript S should be assumed where no

superscript appears.
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Figure 4-5. Gimbaled Star Trackel Geometry
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The gimbals are nominally controlled to center the star in the

focal plane, i.e., to make _FP = [0 0 I] T, and the gimbal

angles are the measurements. Thus, the measurements are

computed as

y* = azimuth--# = h(S ) = tan k Y/xl
(4.3-108)

y* = elevation- 8 = h (sS) = sin-i (SSz)
(4.3-109)

The azimuth equation is to be interpreted as

Y

y/_ 2 S 2
sin _ S S x + Y

(4.3-110)

(4.3-ili)

The field of view of the gimbaled star tracker is specified

by a minimum and maximum elevation and a range of azimuths.

The azimuth range is specified by its midpoint and full

width; if a width of more than 360 degrees is specified, the

field of view includes all azimuth values.

The sensor noise modeling must allow for imperfect centering

of the star image in the sensor focal plane. Thus, if we let

= tan -I (Sy/Sx) + A_ (4.3-112)

8 = sin -I (S z) + A_ (4.3-113)
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_FP =

X

Cy
(4.3-114)

we find, to first order in the small quantities A@, AS,

ex' and ey

/ 2 S 2A¢ = -¢y Sx + y (4.3-115)

A8
X

To these gimbal errors due to focal plane centering errors,

we must add intrinsic errors in the gimbal readouts. We

take the mean squares of A_ and AS, assuming equal variances

2 in the x and y focal plane errors and assuming the
aFp

different errors to be uncorrelated. This gives

variance in ¢ = a_ + _FP (4.3-117)

2 2
variance in 8 = a 8 + aFp (4.3-118)

9 9

where a_ and a_ are the variances of the gimbal readout
r

errors and a_, a 8, and aFp are all given in degrees, the

units of the measurements.

The measurement parameters, which the user may select as

either solved for or considered, for the gimbaled star

tracker are

2.

The x sensor misalignment angle (deg)

The y sensor misalignment angle (deg)
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3. The z sensor misalignment angle (deg)

4. The azimuth bias (deg)

5. The azimuth scale factor

6. The amplitude of the azimuth periodic measurement

error (deg)

7. The elevation bias (deg)

8. The elevation scale factor

9. The amplitude of the elevation periodic measurement

error (deg)

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

i. The Euler rotation sequence and Euler angles defin-

ing the orientation of the sensor frame relative to

the spacecraft body frame

2. The frequency and phase angle of the azimuth pe-

riodic measurement error

3. The frequency and phase angle of the elevation pe-

riodic measurement error

4. The minimum and maximum azimuth and elevation de-

fining the field of view

When scheduling the gimbaled star tracker, the analyst may

use either or both of the sensor outputs for the error

analysis computations.

A

Partial of the star azimuth _ wrt the unit star vector S:

_ Sy
- - (4.3-119)

8S x S 2 + S 2
x y
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8S
Y

S X

S 2 + S 2
x y

(4.3-120)

/,

= 0 (4.3-121)
8S z

Partial of the star azimuth wrt the bias b:

1 (4.3-122)
8b =

Partial of the star azimuth wrt the scale factor k:

9-_ _h(S)=Sk_ tan-i (SxISz (4.3_123)

Partial of the star azimuth wrt the amplitude of the

periodic error a:

8a = sin (_t + _) (4.3-124)

A

Partial of the star elevation 8 wrt the unit star vector S:

0 (4 3-125)
8S --

x

0 (4 3-126)
8S --

Y

0450
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8S z cos 8 _S 2 + $2x y
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Partial of the star elevation wrt the bias b:

88= 1
8b

(4.3-128)

Partial of the star elevation wrt the scale factor k:

888k _ h(S) = sin -I (Sy) (4.3-129)

Partial of the star elevation wrt the amplitude of the per-

iodic error a:

8_ - sin (_t + _)
8a -

(4.3-130)

2 2 should be given a small
If S z _ i, the quantity S x + Sy

finite positive value to avoid division by zero.

4.3.6 DIGITAL SUN SENSOR MEASUREMENT MODEL AND PARTIAL

DERIVATIVES

The digital Sun sensor provides measurements of the angle

between the sensor boresight and the projectfon of the unit

Sun vector _S in the Y-Z plane and the angle 8 between the

sensor boresight and the projection of the unit Sun vector

in the X-Z plane, as shown in Figure 4-6. The sensor out-

puts N and N 8 are related to these angles by Equa-

tions (7-38) and (7-39) of Reference 3:

= tan -I (Sy/Sz) = A 9 + tan -I

+ A 5) + A 6 sin (A7N _ + AS)]

[A 1 + A2N _ + A 3 sin (A4N _

(4.3-131)

/.

8 = tan -1 (Sx/S z) = B 9 + tan -I [B 1 + B2N 8 + B 3 sin (B4N 8

(4.3-132)

+ B5) B 6 sin (B7N 8 + B8)]
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Digital Sun Sensor Geometry
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where A I, ..., A 9 and B I, ..., B 9 are calibration constants

provided by the manufacturer, and where the superscript S is

to be understood on the components of the Sun unit vector

where no superscript is shown.

The constants A 3, A 6, B 3, and B 6 are very small.

A 6 are neglected, Equation (4.3-131) gives

If A 3 and

A2N = = n 5 tan (_ - A9) - A 1

Sy - S z tan A_

Sy tan A 9 + S z
- A 1

(4.3-133)

<_k_J

This expression for N can be substituted into the sinusoidal

terms on the right side of Equation (4.3-131), and a similar

procedure can be used in Equation (4.3-132) to obtain meas-

urement equations valid to first order in A 3, A 6, B 3, and B 6.

Thus, the measurements are computed as

y* = Nc_ = h(_S, A1 ' ..., A9)

= [n - A 3 sin (A 5 + A 4 n /A2) -

(4.3-134)

A 6 sin (A 8 + A 7 n /A2)]/A 2

y* = N B = h(S S, B I, ..., B9) (4.3-135)

= [n 8 - B 3 sin (B 5 + B 4 ns/B2) - B 6 sin (B 8 + B 7 ns/B2)]/B 2

where n is given by Equation (4.3-133) and

0450

n 8 _ tan (8 - B 9) - B 1

S x - S z tan B 9

= S x tan B 9 + S z - B1
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In ADEAS, it is assumed that the Sun sensor outputs are in

units of degrees•

ADEAS allows the Sun sensor to have either a conical or a

pyramidal field of view. The Sun is visible to the conical

sensor only if the angle between the boresight and _S is

less than the user-specified conical half angle• Similarly,

the Sun is visible to the pyramidal Sun sensor only if

Pyramidal x half angle >Itan -I /sS/sS_I

I  /zl I
and

Pyramidal y half angle >Itan -I /S S/SSI

I \ y/z/

For either configuration, ADEAS also determines whether the

sensor is occulted by the Earth•

The measurement parameters, which the user may select as

either solved for or considered, for the two-axis digital

Sun sensor are

I. The x sensor misalignment angle (deg)

2. The y sensor misalignment angle (deg)

3. The z sensor misalignment angle (deg)

•

The N calibration constants AI, A3, A4, A6, and A 7

(dimensionless)

• The N calibration constant A 2 (deg-l), nominal

value _/180.

6. The N

7. The N

calibration constants A 5, A8, and A 9 (deg)

bias (deg)

©

©
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8. The N scale factor

9. The N amplitude of the periodic measurement error

(deg)

i0. The N 8 calibration constants B I, B 3, B 4, B 6, and B 7

(dimensionless)

ii. The N 8 calibration constant B 2 (deg-l), nominal

value _/180.

12. The N 8 calibration constants B 5, B 8, and B 9 (deg)

13. The N 8 bias (deg)

14. The N 8 scale factor

15. The N 8 amplitude of the periodic measurement error

(deg)

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

1. The Euler rotation sequence and Euler angles defin-

ing the orientation of the sensor frame relative to

the spacecraft body frame

2. The frequency and phase angle of the _ periodic

measurement error

3. The frequency and phase angle of the 8 periodic

measurement error

4. The designation of the sensor field of view as

either conical or pyramidal

5. The conical half angle or pyramidal x and y half

angles

When scheduling the two-axis Sun sensor, the user may use

either or both of the sensor outputs for the error analysis

computations. Since the outputs have units of degrees, the
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value of the sensor white noise standard deviation for each

measurement has units of degrees.

A

Partials of N wrt the unit Sun vector S:

i

8N=/8S x = 0 (4.3-137)

BN /BSy = (SN /Sn ) Sz(l + tan 2 A9)/(S z + Sy tan A9)2

(4.3-138)

8N /8S
z

where

= (SN /8n ) Sy(l + tan 2 Ag)/(S z + Sy tan A9)
2

(4.3-139)

8N=/Sn = [A 2 - A3A 4 COS (A 5 + A 4 n /A2)

- A6A 7 cos (A 8 + A 7 n /A2)]/A _

(4.3-140)

Partials of N wrt the calibration constants:

aNo/aA 1 = - aN/a no_ (4.3-14 I)

8N=/SA 2 =-N_/A2 + (n=/A2)(l- A 2 8N /Sn ) (4.3-142)

BN=/SA 3 = -A21 sin (A 5 + A 4 n /A2) (4.3-143)

8N=/SA 4 =-(A 3 n=/A 2) cos (A5 + A 4 n /A2)
(4.3-144)

0450

8N_/SA 5 = -(A3/A 2) COS (A 5 + A 4 n /A2)
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8N /SA 6 = -A21 sin (A 8 + A 7 n_/A 2) (4.3-146)

8N /8A7 =-(A 6 n /A 2) cos (As + A 7 n_/A 2)
(4.3-147)

8N /SA 8 = -(A6/A2) cos (A 8 + A 7 n_/A 2) (4.3-148)

8N /8A9 = -(SN /Sn )($2 + $2)(I + tan 2 A9)/(Sz + Sy tan A9)2

(4.3-149)

Partial of N wrt the bias b :

8N /Sb = 1 (4.3-150)

Partial of N wrt the scale factor k :

8N /Sk _ h(S s, A I, ..., Ag) = N
(4.3-151)

Partial of N wrt the amplitude of the periodic error:

8N /Sa = sin (_t + _) (4.3-152)

Partials of N 8 wrt the unit Sun vector S:

8Ns/SS x = (SNs/SnB)'Sz(l + tan 2 B9_S z

+ S tan B
x

2
9 )

(4.3-153)

8Ns/SSy = 0
(4.3-154)
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aNs/as z = -(aNs/an s) Sx(I + tan 2 B9)/(S z + Sz tan B9)2
(4.3-155)

where

8Ns/Sn 8 = [B 2 - B3B 4 cos (B 5 + B 4 ns/B2)

- B6B 7 cos (B 8 + B 7 ns/B2)]/B _

Partials of N 8 wrt the calibration constants:

(4.3-156)

8Ns/SB 1 = -SNs/Sn 8 (4.3-z57)

8Ns/aB 2 =-Ns/B2 + (ns/S2)(l- B 2 aNS/an 8) (4.3-158)

8Ns/SB 3 = -B21 sin (B 5 + B 4 nB/B2)

8Ns/SB 4 =-(B 3 ns/B2 ) cos (B5 + B 4 ns/B2)

(4.3-159)

(4.3-160)

8Ns/SB 5 = -(B3/B 2) cos (B 5 + B 4 nB/B2) (4.3-161)

8Ns/SB 6 = -B21 sin (B 8 + B 7 ns/B2) (4.3-162)

8Ns/SB 7 =-(B 6 ns/B2 ) cos (B8 + B v ns/S2)

8Ns/SB 8 = -(B6/B 2) cos (B 8 + B 7 ns/B2)

(4.3-163)

(4.3-164)

(4.3-165)
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Partial of N 8 wrt the bias bs:

8Ns/Sb 8 = 1 (4.3-166)

Partial of N 8 wrt the scale factor ks:

8Ns/ak8 _ h(S S, B I, ..., .B9) = N 8
(4.3-167)

Partial of N 8 wrt the amplitude of the periodic error

8Ns/Sa 8 = sin (_t + _) . (4.3-168)

4.3.7 ANALOG SUN SENSOR MEASUREMENT MODEL AND PARTIAL

DERIVATIVES

The geometry of the one-axis analog Sun sensor is shown in

Figure 4-7. The z-axis is chosen to be the boresight of the

sensor. The unit vector _S is the direction t9 the Sun in

sensor coordinates. The one-axis CSS has two simple photo-

cell "eyes" whose outputs, fl and f2' are proportional to

the cosine of the angle between the spacecraft to Sun vector

and the normal to the eye surface. The sensor output fCSS

is zero unless both eyes are illuminated, in which case the

output is the difference of the two eye outputs. Thus the

measurement is computed as:

y* = h(S ) = fCSS S , S (4.3-169)

_ • _ > C 2

fl f2 if _S _I' > el and _S• U2 -

O if _S Û I, < C 1 or _S ^• • U 2 < C 2

O450

4-73



i

A

uI

A

u2

A

PROJECTION OF S S INTO

X, Z PLANE

Ss
Z

°.9.
CO

=,

0
U3
.,¢
0

Figure 4-7. Analog Sun Sensor Geometry
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where

^ 1 + bl( S S sin c_)(4.3-170)
1 + b_ _S . U1 S cos = + Sxfl = 2 s = 2 s

1 + b2 _S . U2 • _ S cos = sinf2 = 2 s = 2 s - Sx
(4.3-171)

The parameters b I and b2 are scale factor errors; C 1 and C 2

are the cosines of user-supplied fields of view of the two
A

eyes, and U 1 and U 2 are unit vectors specifying the normals

of the eye surfaces:

Isio1U1 = (4.3-172a)

Lcos

U2 = (4.3-172b)

COS

The calibration factor s is nominally equal to sin _.

Thus, with the Sun vector in sensor coordinates written as

cos O sin _]
_S = I sin O (4.3-173)

]cos O cos

and with b I b 2 0 _S ^ A= = , * U 1 E C I, and _S . U2 E C2 ' the

sensor output is

fcss = cos 8 sin
(4.3-174)
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This output is nominally equal to _ in radians if both

and 8 are small angles, which is if the Sun is close to

the sensor boresight. Note that errors in s do not have to

be considered independently, since they are equivalent to

errors in the scale factor k.

The measurement parameters, which the user may select as

either solved for or considered, for the analog Sun sensor

are

1. The measurement bias (radians)

2. The measurement scale factor

3. The amplitude of the measurement periodic error

(radians)

4. The half-angle between the eye normals, _ (deg)

5. The individual eye scale factor errors, b I and b2

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

1. The frequency and phase factor of the periodic

measurement error

2. The half-angle between the eye normals, = (deg)

3. The individual eye scale factor errors, b I and b2

(nominally zero)

4. The cosines of the eye fields of view, C 1 an_ C2

When scheduling the analog Sun sensor, the analyst does not

have a choice of measurements to use because there is only

one.

n computing the partial derivatives, s is set equal to

sin = after carrying out the differentiations. The values

given by Equations (4.3-175) through (4.3-183) are for the
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case that both eyes are illuminated. If either

_S • U1 < Cl or _S • U2 < C2' the partial derivatives are all

identically zero.

A

Partial wrt the Sun vector S (superscript S to be under-

stood):

8fCS S 2 + b I + b 2

aS - 2
x

(4.3-175)

aS
Y

= 0 (4.3-176)

.'j,

8fcs S

as
z

b I - b 2

2

Partial wrt the half angle _:

cot (4.3-177)

afcss 2 + b I + b2
= S

B_ 2 x
cot

b I - b2

2 S z (4.3-178)

Partials wrt the scale factors b I and b 2

afcss ½ (S z cot _ + Sx)
ab I =

(4.3-179)

8fcss ½ (S z cot _ - Sx)
ab 2 = -

(4.3-180)

Partial wrt the bias b:

0450
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Partial wrt the scale factor k:

8k = fCSS (4.3-182)

Partial wrt the amplitude of the periodic error

8a = sin (_t + _) (4.3-183)

4.3.8 GIMBALED SUN SENSOR MEASUREMENT MODEL AND PARTIAL

DERIVATIVES

The gimbaled Sun sensor measurement model and partial deriv-

atives are identical to those for the gimbaled star tracker,

described in Section 4.3.5, except that the Sun unit vector

is used in place of the star unit vector. The numerical

values of parameters in the models may differ, of course.

©
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SECTION 5 - REFERENCE SYSTEMS AND VECTORS

5.1 COORDINATE SYSTEMS

5.1.i GEOCENTRIC INERTIAL (GCI) COORDINATE SYSTEM

The GCI coordinate system, illustrated in Figure 5-1, defines

a fixed set of axes in inertial space. The Z I axis is paral-
A

lel to the Earth's spin vector or north pole. The X I axis

is along the vernal equinox, the Earth to Sun direction when

the Sun crosses the equatorial plane. The YI axis is given
A A

by the vector cross product Z I x X I. In summary,

a

X = vernal equinox
^I

ŶI = zI x xz/Iz I x xzl

Z I = Earth spin vector

(5.z-z)

Z GC!

NORTH
;ELES'nAL

CELESTIAL EQUATOR

X GC!

Figure 5-1. Definition of the GCI Coordinate System
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The GCI coordinate system can be true-of-date, mean-of-date,

or mean-of-epoch for some fixed epoch. Only mean-of-epoch

coordinate systems are truly inertial, but the effects of

the motion of true-of-date and mean-of-date coordinate sys-

tems are negligible for attitude error analysis computations.

For high accuracy applications, all reference vectors (stars,

Sun, Moon, spacecraft) should be expressed in the same iner-

tial coordinate system.

5.1.2 EARTH-CENTER POINTING COORDINATE SYSTEM

A A

The Earth-center pointing coordinate system (X E, YE' ZE) is

defined by the spacecraft orbital position and velocity.

These give two orthogonal axes: E = E/ , where E is the

spacecraft-to-Earth vector; E x N, where N is the orbit nor-

mal vector. The vector ±E can be chosen as one coordinate

axis of the Earth-center pointing system, and ±E x N as a

second axis. Then the third axis is defined to give a right-

hand orthogonal triad X E, YE' ZE"

The transformation matrix from GCI coordinates to Earth-

center pointing coordinates is

6

AR/I = (5.1-2)

_I ^I r'I
where X E, YE' and ZE are 3 x 1 column vectors containing the

A

components along the GCI axes of the vectors X E, YE' and

Z E, respectively.

0450
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5.1.3 LOCAL VERTICAL POINTING COORDINATE SYSTEM

A A

The local vertical pointing coordinate system (X L, YL' ZL)

is defined in terms of the local vertical pointing (_LV) and

orbit normal (N) unit vectors. The local vertical pointing

unit vector components in GCI coordinates are given by

FAIPLv = I -cOs _ sin

L -sin

(5.l-3)

where T = geodetic longitude

= arc tan [Ry/R x] (5.1-4)

= geodetic latitude

= arc tan {R z (i- e2)_ R2 +R2x y -I 1

where e = Earth eccentricity and R = __I is the

spacecraft vector resolved in GCI coordinates.

(5.1-5)

Earth-to-

A A a A

The^ user^ specifies which unit vector (-X L, _+XL' -YL' +YL'

-Z L, +ZL) is defined as the pointing axis (PLV) and which
A A

unit vector is defined as the axis PLV x N. The third axis

is defined to give a right-hand orthogonal triad X L, YL' ZL"

The transformation matrix from GCI coordinates to local vet-

tical pointing coordinates is

0450
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_I _I ^I
where X L, YL' and Z L are 3 x 1 column vectors continuing the

components along the GCI axes of the vectors X L, YL' and Z L,

respectively.

5.1.4 SUN-POINTING COORDINATE SYSTEM

The Sun-pointing coordinate system (X S, YS' ZS) is defined

in terms of the following unit vectors:

/k

S - Spacecraft-to-Sun Unit Vector

- (5.1-v)

A /%, /k

U - S x N E (5.1-8)

where RES = Earth-to-Sun vector

= Earth-to-spacecraft vector (= -E)

N E _ GCI z-axis (North Pole)

The vector ±S is chosen as one coordinate axis of the Sun-
A

pointing system, and ±_ as a second axis. Then the third

axis is defined to give a right-hand orthogonal triad X S,

YS' ZS"

The transformation matrix from GCI coordinates to Sun-

pointing coordinates is

AR/I =

T

(5.1-9)
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^I ^I ^I
where X S, YS' and Z S are 3 x 1 column vectors containing the

A A A

components along the GCI axes of the_vectors X s, YS' ZS'

respectively.

5.2 SPACECRAFT EPHEMERIS GENERATION

ADEAS has two options for spacecraft ephemeris generation:

internal ephemeris generation by numerical integration and

reading of an externally-generated ephemeris file.

5.2.1 NUMERICAL INTEGRATION

The Cartesian position _ and velocity _ of the spacecraft in

an inertial coordinate system, obey the coupled ordinary

differential equations

d_/dt = { (5.2-1)

r

d_/dt = a (5.2-2)

where _ is the acceleration of the spacecraft. The next

three sections specify the algorithms for computing _.

Then, the last two sections present the numerical integra-

tion and interpolation algorithms.

5.2.1.1 Earth Potential Including J2 Term

The force per unit mass on the spacecraft due to the Earth's

gravity is

a x = -_x/r3{l - (3/2) J2(R/r)2 [5(z/r) 2 - i]} (5.2-3)

ay =-_y/r3{l- (3/2) J2(R/r)2 [5(z/r) 2 - i]} (5.2-4)

0450

a z = -_z/r3{l - (3/2) J2(R/r)
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where

p = 3.986005 x 105 km3/s 2 (5.2-6)

is the default gravitational constant of the Earth

-3
J2 = 1.08263 x i0 (5.2-7)

is the default geopotential coefficient for the Earth's

oblateness,

R = 6378.140 km (5.2-8)

is the default equatorial radius of the Earth, and x, y, and

z are the GCI components of the spacecraft position vector.

Higher order effects of the nonsphericity of the Earth are

not modeled in ADEAS. If these terms are important for an

application, an externally-generated spacecraft ephemeris

must be used.

On user option, the J2 terms can be omitted. The central

body term of the Earth, -p?/r 3, is always included.

5.2.1.2 Atmospheric Draq Effects

Atmospheric drag acceleration is modeled as a drag force in

the direction of the relative wind vector acting on a satel-

lite of constant surface area. The velocity of the satel-

lite relative to the atmosphere is computed in the inertial

coordinate system by subtracting the motion of the atmos-

phere, assumed to rotate with the Earth, from that of the

satellite:

0450

Vrel = r - _ x r (5.2-9)
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The Earth's rotation vector, _, is directed along the

Earth's instantaneous spin axis with a magnitude equal to

the rotation rate of the Earth and components (_1' _2' _3 )"

Ignoring the effects of precession and nutation, the Z-axis

is aligned with the north polar spin axis such that _1 and

m2 are equal to Zero, and _3 = 7.29211585494 x 10 -5 rad/sec

is constant. Therefore, in this approximation, Equa-

tion (4-12) reduces to

Vrel = z _3 (5.2-10)

For the case of a spherical satellite, the atmospheric drag

acceleration is computed as

- 1
aD = -2

CDA

m P0(h) Vre I IVrell (5.2-II)

where CD = aerodynamic force coefficient, which is an ad-
justable parameter

A = cross-sectional area of the satellite

m = mass of the satellite

P0(h) = altitude density function computed from the
atmospheric drag model

Nominally, for a spherical satellite, the aerodynamic force

coefficient, CD, is equal to 2.0. In ADEAS, the altitude

density function, P0(h), is modeled using a Harris-Priester

atmospheric model. Harris and Priester determined the phys-

ical properties of the upper atmosphere theoretically by

solving the heat conduction equation under quasi-hydrostatic

conditions. Approximations for fluxes from the extreme

ultraviolet and corpuscular heat sources were included, but

the model averages the semiannual and seasonal-latitudinal

0450
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variations and does not attempt to account for the extreme

ultraviolet 27-day effect.

The atmospheric model presented here is a modification of

the Harris-Priester concept. The modification attempts to

account for the diurnal bulge by including a cosine varia-

tion between a maximum density profile at the apex of the

diurnal bulge (which is located approximately 30 degrees

east of the subsolar point) and a minimum density profile at

the antapex of the diurnal bulge. Discrete values of the

maximum- and minimum-density altitude profiles, correspond-

ing to mean solar activity, are stored in tabular form as

Pmax(hi) and Pmin(hi), respectively. Different maximum and

minimum profiles are available for different levels of solar

activity. Exponential interpolation is used between entries;

i.e., the minimum and maximum densities, Pmin and Pmax'

are given by

h. - h 1Pmin(h) = Pmin(hi) exp i
Hmin

-
max

(5.2-12)

where (h i 5 h _ hi+l) and the respective scale heights,

Hmi n and Hma x, are given by

Hmi n =

h i - hi+ 1

£n[Pmin(hi+l)/Pmin(hi)]
(5.2-13)

H
max

h, _ h,

i l+l

£n[Pma x (hi+l)/Pmax(hi)]
(5.2-14)
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A good approximation (neglecting polar motion) for the sat-

ellite height, h, is given by

h = r - R E (5.2-15)

where R E is the mean radius of the Earth, given as

Re<l - fE) (5.2-16)

RE = _ _ 21 - (2f E fE ) cos 2 8

and r = magnitude of the satellite position vector

R = equatorial radius of the Earth
e

fE = Earth's flattening coefficient

= l-(polar radius)/(equatorial radius)

6 = declination of the satellite (it is assumed that 6

equals the geocentric latitude of the subsatellite

point)

If the density is assumed to be maximum at the apex of the

bulge, the cosine variation between the maximum and minimum

density profiles is

P0(h) = Pmin(h) + [Pmax(h) - Pmin(h)] cos n ( 2X) (5.2-17)

where 7 is the angle between the satellite position vector

and the apex of the diurnal bulge.

The cosine function in Equation (5.2-17) can be determined

directly as

n X
cos

2

n

= ! + COS 7|
2 J

n/2

i r- UBI n/2; ÷ J (5.2-18)

0450
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where _ = satellite position vector

UB = unit vector directed toward the apex of the

diurnal bulge

For ADEAS, n has been assigned the value of 6.

The vector UB has the following components:

UBx = cos 6 s cos(_ s + k)
(5.2-19)

UBy = cos 6s sin(_ s + A)

UBz = sin 6 S

(5.2-20)

(5.2-21)

where 6 S = declination of the Sun

=S = right ascension of the Sun

= lag angle between the Sun line and the apex of

the diurnal bulge = 30 degrees

5.2.1.3 Sun and Moon Perturbations

The perturbations on the spacecraft's orbit due to its

attraction by a point mass Sun and/or Moon are optionally

included in ADEAS. The acceleration experienced by a sat-

ellite due to the Sun and Moon, expressed in an inertial

coordinate system, is

©

where

0450

2
"" _ _k --

rg = - _._ r3 rkp
k=l kp

(5.2-22)

= vector from the center of an inertial coordinate

system to the satellite

Nk = product of the universal gravitational constant

and the mass of the kth point mass

rkp = vector from the kth point mass to the satellite
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rkp = magnitude of the vector rkp

k = 1 for the Sun

k = 2 for the Moon

In ADEAS, the motion of the spacecraft is referenced to the

Earth's position. The desired form for the acceleration is

obtained by subtracting the acceleration acting on the ref-

erence body,

2

"" _-_ Pk -
re = /_w -_- r k (5.2-23)

k=l r

{"._,

",rL-;i

where _k = vector from the kth point mass to the reference

body (the Earth)

r k = magnitude of the vector _k

from each side of Equation (4-25) to obtain

2_ -. -. _k -- _k r (5.2-24)
a - rg - r e = - rkp - r

k=l\ P

For the case in which the reference central body, i.e., the

center of the coordinate system, is the Earth, and the per-

turbing point masses are the Sun and the Moon, Equa-

tion (4-27) becomes

i e = i S + i M (5.2-25)

where

rs - r rs3.)is = _s 17s _ 713 - Irsl
(5.2-26)

0450
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(5.2-27)

The quantities _S and PM are the gravitational constants of

the Sun and the Moon, respectively, and _S and ?M are the

position vectors of the Sun and the Moon, referenced to the

Earth.

5.2.1.4 Runae-Kutta Intearetion

The orbital equations of motion can be written compactly in

terms of the 6-component vector

as

dX/dt = f (X, t)

(5.2-2s)

(5.2-29)

The fourth-order Runge-Kutta numerical integration gives

values Xn of the vector at a sequence of times t n , for n

i, 2, ..., given the initial value

 (to) (5.2-30)

The solution is advanced from time t to
n

tn+ 1 = tn + h (5.2-31)

0450
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by

Xn+l = Xn + (h/6)(fl + 473 + 74) (5.2-32)

where

fl _ f(Xn' tn) (5.2-33)

f2 _ f(Xn + hfl/4' tn + h/4)
(5.2-34)

73 5 f(Xn + hf2/2' tn + h/2)
(5.2-35)

f4 = f(Xn + h(fl - 2f2 + 2f3)' tn + h) (5.2-36)

The integration stepsize h is determined by accuracy consid-

erations. For ADEAS the stepsize is a user input.

5.2.1.5 Hermite Interpolation

The spacecraft position and velocity are typically required

at points other than the points X0' XI' X2' ... given by the

Runge-Kutta integration. For output at intermediate times,

a Hermite interpolation scheme is used.

Assume we have the spacecraft position and velocity r i, v i

at the n equally-spaced times tk+ I, tk+ 2, ..., tk+ n with

spacing h _ ti+ 1 - t i. Then, the n-point Hermite interpola-

tion for the time

o45o

t = tk+ 1 + sh

5-13
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is

r(t)

n

E m= [grr(i, s) rk+ i + grv(i, s)Vk+ i]

i=l

(5.2-38)

v(t)

n

i=l

[gvr(i, s) rk+ i + gvv(i, s) Vk+ i]
(5.2-39)

where

2

grr(i, s) = [i- 2Ci(s) B i] Di(s)
(5.2-40)

grv(i, s) = Ci(s) Di(s) 2 h (5.2-41)

gvr(i, s) = (2/h)[Ai(s) - 2Ai(s) B i Ci(s) - B i Di(s)] Di(s)

(5.2-42)

gvv(i, s) = [Di(s) + 2 Ai(s) Ci(s)] Di(s)
(5.2-43)

with

Ai(s ) _-- (i - j)-I "

j =i k=l

j_i k_i, j

(S - k + l)/(i -
(5.2-44)

0450
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j_i

(i - j)
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Ci(s ) - s - i + 1 (5.2-46)

4.

n

Di(s ) - _

j=l

j_i

[(s - j + l)/(i - j)] (5.2-47)

For the Runge-Kutta integration a four-point interpolator

(n = 4) is used. A six-point interpolator (n = 6) is used

for interpolating data from the ephemeris file, as described

in Section 5.2.2.

5.2.2 EPHEMERIS FILE

The position and velocity for a spacecraft at a specified

time may be evaluated by accessing a standard GTDS EPHEM

file (Reference 4).

5.3 GEOMAGNETIC FIELD VECTOR COMPUTATION

Whenever the analyst specifies a spacecraft using a magne-

tometer, the desire_ magnetic field order must be specified

between 2 and i0. The computation of the direction of the

Earth's magnetic field at any time and position is based on

the spherical harmonic model of Appendix H (Reference 3).

Specifically, the field is computed using Equations (H-12)

to (H-15) of that reference.

5.4 SUN AND MOON EPHEMERIS GENERATION

The following sectiQns specify the computation of the Sun

and Moon vectors in an Earth-centered coordinate system.

The spacecraft-to-Sun and spacecraft-to-Moon vectors are

computed by subtracting the Earth-to-spacecraft vector from

the Earth-to-Sun and Earth-to-Moon vectors, respectively.

5.4.1 SLP FILE

SLP ephemeris data files are regularly created using a JPL

planetary ephemeris tape as a data source.

5-15
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The solar and lunar positions are calculated from
v

t <t - tm> i-i=
i=l

(5.4-I)

where X(t) = desired position vector

Ki = ephemeris polynomial coefficients from SLP
data file

t = time in seconds from beginning of ephemeris year

t m = time in seconds from beginning of ephemeris year

to the midpoint of the curve-fit interval, from
SLP data file

N = degree of polynomial plus one

for Moon, N = 9

for Sun, N = 5

5.4.2 ANALYTIC SUN EPHEMERIS COMPUTATION

The position of the Sun (X s, Ys' Zs) in mean-of-date GCI co-

ordinates is determined by evaluating a series expansion in

the longitude of the Sun. The components of the Sun's posi-

tion are related to the solar orbital elements by

X = r (cos r ) (5.4-2)
s s s

Ys = rs (cos c sin rs ) (5.4-3)

Z s = rs (sin _ sin rs) (5.4-4)

where

0450

= mean obliquity of the ecliptic

Ts = solar longitude

r = Earth-to-Sun distance
s
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The mean obliquity of the ecliptic (¢) is defined as

= 23?4522940 - 0?0130125 T c (5.4-5)

where T c represents the full Julian date of the current

time as the number of Julian centuries since 1900.00:

(Julian date of current time) - 2415020.0

Tc = 36525.0 (5.4-6)

The solar longitude (rs) in degrees is defined as

r s = G s + £s + (360o/_) es sin (£s) (5.4-7)

where G s = longitude of perigee of the solar orbit

= 2819220844 + 090000470684 _D

_s = solar mean anomaly

= 3589475833 + 09985600267 _D

es = eccentricity of the Earth's orbit about the Sun
= 0.01675104 - 0.11444 x 10 -8 AD

and _D represents the full Julian date of the current time

as the number of days since 1900.00:

AD = 36525.0 T (5.4-8)
c

The Earth-to-Sun distance (rs) is defined as

0450

ds = 1 + e cos (£S)

r S s
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where ds = mean solar geocentric distance
= 149597871.0 kilometers

5.4.3 ANALYTIC MOON EPHEMERIS COMPUTATION

The position of the Moon (Xm, Ym' Zm) in mean-of-date GCI

coordinates is determined by evaluating series expansions in

the latitude and longitude of the Moon. The components of

the Moon's position are related to the lunar orbital ele-

ments by

X m = rm (cos e m cos rm) (5.4-10)

Ym = rm (cos 8 m sin r m cos _ - sin 8 m sin _) (5.4-11)

Z m = rm (cos 8m sin r m sin c + sin e m cos ¢) (5.4-12)

where _ = mean obliquity of the ecliptic

r m = lunar ecliptic longitude

8 m = lunar ecliptic latitude

r = Earth-to-Moon distance
m

The mean obliquity of the ecliptic (_) is defined by Equa-

tions (5.4-5) and (5.4-6).

The lunar ecliptic longitude (rm) is defined as

rm = Lm + seriesl (Dm' Fm' £m' £s ) (5.4-13)

where L m = the mean longitude of the

Moon, measured in the eclip-

tic plane from the mean

equinox of date to the mean

ascending node of the lunar

orbit, and then along the

orbit

0450
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= 270°26'02.99 + (48096050

" "08 2
+ 307°52'59.31)Tc - 4. T C

seriesl (Dm, Fm, £m, _s) = a series expansion in the

angles D m, F m, _m, and _s

presented in Table 5-1

The terms within the series expansion are defined as

D
m

= mean elongation of the Moon from the Sun

q,

5 i"= 350°44'14.95 + (444960o0 + 307o06 , .18)T
c

|!

- 5.17 T 2
C

(5.4-14)

F m = argument of latitude of the Moon

'_20 "= 11015'03 + (483120?0 + 82°01'30.54)T
c

" 2

- 11.56 T C

£m = lunar mean anomaly

Of

6 "= 296006'1 .59 + (47700000 + 198050'56.79)T
C

33" T 2+ .09
C

(5.4-15)

(5.4-16)

£
S

= solar mean anomaly

g,

59"= 358028'33.00 + (35640o0 + 359o02 , .10)T
c

(5.4-17)

The lunar ecliptic latitude is (_m) is defined as

8 m = series 2 (D m, Fm' £m' £s ) (5.4-18)
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Coefficient

(radian$)

-0.000607

0.011490

-0.000267

-0.001996

-0.000801

-0.003238

-0.000118

0.000138

0.000716

0.000192

-0.000186

-0.022236

0.10976

0.000931

-0.000219

-0.000999

-0.000532

-0.000149

-O.OO1O26

0.003728

0.000175

Table

sin

sln

sln

szn

sln

sln

sln

sin

sin

sin

sin

sin

sln

sln

sln

sln

sin

sln

sln

sln

sln

5--1.

£M

Series for XM

Argument Multiple

FM DM

of

£S

0 0 1 0

0 0 2 0

0 2 -2 0

0 2 0 0

0 0 -2 1

0 0 0 1

0 0 2 1

1 0 -2 -I

1 0 0 -i

1 -2 0 0

1 0 -4 0

1 0 -2 0

1 0 0 0

1 0 2 0

1 2 0 0

1 0 -2 1

1 0 0 1

2 0 -4 0

2 0 -2 0

2 0 0 0

3 0 0 0
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where series 2 (D m, F m, _m, £s) = a series expansion in the

angles D m, F m, £m, and £s

presented in Table 5-2

The Earth-to-Moon distance (rm) is defined as

d m

--r = 1 + series 3 (D m, F m, £m' £s )
m

(5.4-19)

" -'.t

where d m = mean lunar geocentric dis-
tance

= 384399.06 kilometers

series3 (Dm, Fm, £m, _s) = a series expansion in the

angles D m, F m, _m, and £s

presented in Table 5-3

As noted previously, the series are summarized in Tables 5-1

through 5-3. These tables give the coefficients of each

trigonometric term and the angles that appear in that term.

The trigonometric terms contain only integer multiples of

the four angles. The first term in e M is

8 M = 0.089503 sin (FM) radians

The formulas for the lunar position include the leading

terms of Brown's lunar theory. All perturbation terms with

amplitudes greater than 50 kilometers are included (21 terms

in the ecliptic longitude, ii terms in the ecliptic lati-

tude, and ii terms in the distance); this achieves an over-

all positional accuracy of 1 arc-minute (0.005 radian or

200 kilometers).

0450

5-21



Coefficient
Cradian$)

0.089503

0.000569

-0.003023

-0.000144

0.004897

-0.000807

0.004847

-0.000967

0.000301

0.000154

0.000161

Table

sin

sln

sln

sin

sln

sin

sln

sln

sln

sln

sin

5--2.

£M

Series for 6_4

Argument Multiple

FM D M

0 1 0

0 1 2

0 1 -2

0 1 -2

1 1 0

1 1 -2

1 -i 0

1 -i -2

2 1 0

2 -i 0

1 -i 2

of

aS

0

0

0

1

0

0

0

0

0

0

0
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Table 5-3. Series for _M

Argument Multiple of

Coefficient

(radians) £M FM DM £S

0.0082488 cos 0 0 2 0

0.0005604 cos 0 0 -2 1

0.0003369 cos 1 0 0 -i

-0.0002086 cos 1 -2 0 0

0.0i00247 cos 1 0 -2 0

0.0545008 cos 1 0 0 0

0.0009017 cos 1 0 2 0

0.0004219 cos 1 0 -2 1

-0.0002773 COS 1 0 0 1

0.0029700 cos 2 0 0 0

0.0001817 COS 3 0 0 0
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5.5 STAR CATALOG GENERATION

ADEAS will enable the user to provide a star catalog through

user input, by specifying a SKYMAP Run Star Catalog file, or

by specifying the internal generation of a uniform star dis-

tribution.

5.5.1 SKYMAP FILE

ADEAS will have the capability to access a user-specified

SKYMAP Run Star Catalog data set (Reference 5) to retrieve

star magnitudes and positions (x, y, and z components) di-

rectly from the data set. The information will be contained

within the data set in a format as specified for the GRO Run

Star Catalog defined as

Word 1 INTEGER*4

Word 2 REAL*4

Word 3 REAL*4

Word 4 REAL*4

Word 5 REAL*4

Word 6 REAL*4

Word 7 REAL*4

Word 8 REAL*4

5.5.2

SKYMAP ID number

x-component of GCI vector, epoch

2000.0, proper motion to 1990.0

y-component of GCI vector, epoch

2000.0, proper motion to 1990.0

z-component of GCI vector, epoch

2000.0, proper motion to 1990.0

Visual magnitude

Not required

Not required

Not required

UNIFORM STAR DISTRIBUTION

ADEAS will have the capability to distribute n stars uni-

formly over the celestial sphere, where n is a user input.

The following method is used to distribute the stars.

The unit sphere has an area of 4_, so if a square patch

were allocated to each star, it would have a side of

©

0450

d = _/n radians (5.5-1)
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It is impossible to cover a sphere with nonoverlapping square

patches, but this equation should be a good approximation to

the star spacing for large n.

The uniform distribution algorithm puts the first star at

the north pole, the second star at the south pole, and any
remaining Stars on m rings of constant latitude,

where

m : TRUNC/4 (n - i) (5.5-2)

TRUNC denotes truncation, i.e., TRUNC(X) is the largest in-

teger less than or equal to X. This function is chosen to

give a good distribution for small n and to tend to spacing

d for large n. The rings are at latitude,

_k _- (_/2)[i - (k + l)/(m + i)] for k = i, 3, 5, ... (5.5-3)

_k = -_k-i for k = 2, 4, 6, ... (5.5-4)

where k runs up to m. This indexing is chosen so that the

rings move toward the equator for increasing k.

The algorithm is initialized for n > 2 by

n = n - 2 (5.5-5)
remaining

_remaining

m

= _ cos _k

k=l

(5.5-6)

-,i
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The quantity _remaining is the total length around the rings
divided by 2_. Then, the following computations are per-
formed for k = 1 to m:

Set n k = ROUND (nremaining
(5.5-7)

where ROUND(X) is the closest integer to X.

Put n k stars on the ring at latitude Ak and longitude 2_j/n k

for j = 0, I, ..., n k - i. Set

nremaining = nremaining - n k

and

_remaining = _remaining - cos Ak

5.6 LINE-OF-SIGHT SENSOR vISIBILITY

Occultation and interference of all line-of-sight sensors

will be evaluated as requested by the user. Both computa-

tions may be independently enabled or disabled for each %en-

sot. When the occultation and interference computations

have been enabled for a sensor, the interference computation

will be evaluated first.

5.6.1 OCCULTATION

The occultation of a sensor will be defined as the intersec-

tion of the line-of-sight vector from the spacecraft to the

observed object and the disk of the occulting object as de-

fined by that object's angular radius. Line-of-sight sensors

may be occulted by the Earth or Moon.
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Given the position vector of the occulting object (_B) in

body coordinates and the radius of this object (r), the an-

gular radius of this object (8) is computed as:

(s.6-1)

The sensor is occulted by this object when

6_ >_ cos -I B " °B (5.6-2)

IoBl

A

where L B = line-of-sight unit vector from the spacecraft to
the observed object in body coordinates

5.6.2 INTERFERENCE
s

The interference of a sensor, excluding the V-slit and gimbaled

sensors, will be defined as the intersection of the sensor

boresight and the disk of the interfering object as defined

by the sum of that object's angular radius and an interfer-

ence angle associated with that object as defined by the

user. The V-slit and gimbaled sensor interference computa-

tions replace the sensor boresight with the line-of-sight

vector from the spacecraft to the observed star. Line-of-

sight sensors may be interfered with by the Earth, Sun, or

Moon.

Given the position vector of the interfering object (_B) in

body coordinates and the radius of this object (r), the angu-

lar radius of this object (e) is computed as defined in Equa-

tion (5.6-1). The sensor, excluding the V-slit and gimbaled

sensors, is interfered with by this object when
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A

where B = unit boresight vector in body coordinates

r = user defined interference angle for the interfering

object being evaluated

The V-slit and gimbaled sensors, similarly, are interfered

with by this object when

t_

(e + _) _> COS -I L'B" "- OB (5.6-4)

L I%1

A

where L B = line-of-sight unit vector from the spacecraft to
the observed object in body coordinates

0450

5-28



REFERENCES

I •

•

•

•

•

Systems Technology Laboratory, STL-87-005, Attitude

Determination ErrQr Analysis System (ADEAS) Release 4

Requirements Document, F. Markley, E. Seidewitz, and

D. Weidow, October 1987

Computer Sciences Corporation, CSC/TM-83/6175, Attitude

Determination Error Analysis (ADEAS) Proaram Reauire-

ment$ and Mathematical SPecifications (Preliminary)

B. Fang and W. Davis, December 1983

J. R. Wertz, ed., Spacecraft Attitude Determination and

Control• Dordrecht, Holland: D. Reidel, 1978

Computer Sciences Corporation, CSC/SD-83/6051, Data Set

Layouts for the Goddard Trajectory Determination System

(GTDS) (Revision i), December 1985, pp. FRN 24-1 to

FRN 24-17

--, CSC/SD-80/6035, SKYMAP System User's Guide, August

1980

0450

R-I



_mm_ r

_Dr

J
vqlm_V


